Chinese Journal of Dermatology ›› 2023, e20220588.doi: 10.35541/cjd.20220588
• Reviews • Previous Articles Next Articles
Ding Meilin, Li Hongyang, Zhang Wei, Zeng Xuesi
Received:
2022-08-24
Revised:
2023-04-05
Online:
2023-01-05
Published:
2023-07-12
Contact:
Zhang Wei
E-mail:ifmtjoel@163.com
Supported by:
Ding Meilin, Li Hongyang, Zhang Wei, Zeng Xuesi. Pathogenesis of extramammary Paget′s disease[J]. Chinese Journal of Dermatology,2023,e20220588. doi:10.35541/cjd.20220588
[1] | Siesling S, Elferink MA, van Dijck JA, et al. Epidemiology and treatment of extramammary Paget disease in the Netherlands[J]. Eur J Surg Oncol, 2007,33(8):951⁃955. doi: 10.1016/j.ejso.2006. 11.028. |
[2] | Wigley C, Zargaran D, Nikkhah D, et al. Ectopic extramammary Paget′s disease of the abdominal wall with abdominoplasty reconstruction[J]. BMJ Case Rep, 2022,15(3):e243322. doi: 10.1136/bcr⁃2021⁃243322. |
[3] | Tan L, Huang J, Zhang Y, et al. Evaluation of in vivo reflectance confocal microscopy in the diagnosis of extramammary Paget′s disease[J]. Microsc Res Tech, 2022,85(1):283⁃289. doi: 10. 1002/jemt.23903. |
[4] | Scarbrough CA, Vrable A, Carr DR. Definition, association with malignancy, biologic behavior, and treatment of ectopic extramammary Paget′s disease: a review of the literature[J]. J Clin Aesthet Dermatol, 2019,12(8):40⁃44. |
[5] | Fusumae T, Fukuda K, Hirai I, et al. Management and outcomes of hydronephrosis in patients with metastatic extramammary Paget′s disease: a retrospective analysis[J]. J Dermatol, 2022,49(8):787⁃791. doi: 10.1111/1346⁃8138.16407. |
[6] | Shah VI, Bergin L, Rowlands GL, et al. Unusual manifestations of vulval Paget disease[J]. Int J Gynecol Pathol, 2022,41(5):476⁃483. doi: 10.1097/PGP.0000000000000824. |
[7] | Simonds RM, Segal RJ, Sharma A. Extramammary Paget′s disease: a review of the literature[J]. Int J Dermatol, 2019,58(8):871⁃879. doi: 10.1111/ijd.14328. |
[8] | 张韡, 曾学思, 孙建方. 乳房外 Paget 病的病理学研究进展[J]. 中华皮肤科杂志, 2015,48(12):897⁃898. doi: 10.3760/cma.j.issn.0412⁃4030.2015.12.023. |
[9] | Karpathiou G, Mobarki M, Papoudou⁃Bai A, et al. Autophagic factors in Paget disease[J]. Pathol Res Pract, 2022,236:154001. doi: 10.1016/j.prp.2022.154001. |
[10] | Chang YW, Ma H, Liao WC. Survival analysis of extramammary Paget′s disease (EMPD) in a tertiary hospital in Taiwan[J]. World J Surg Oncol, 2021,19(1):110. doi: 10.1186/s12957⁃021⁃02228⁃z. |
[11] | Lam C, Funaro D. Extramammary Paget′s disease: summary of current knowledge[J]. Dermatol Clin, 2010,28(4):807⁃826. doi: 10.1016/j.det.2010.08.002. |
[12] | Marucci G, Betts CM, Golouh R, et al. Toker cells are probably precursors of Paget cell carcinoma: a morphological and ultrastructural description[J]. Virchows Arch, 2002,441(2):117⁃123. doi: 10.1007/s00428⁃001⁃0581⁃x. |
[13] | Smith AA. Pre⁃Paget cells express a Paget cell marker before losing a keratinocyte marker[J]. Intractable Rare Dis Res, 2021,10(1):58⁃59. doi: 10.5582/irdr.2020.03086. |
[14] | Belousova IE, Kazakov DV, Michal M, et al. Vulvar toker cells: the long⁃awaited missing link: a proposal for an origin⁃based histogenetic classification of extramammary paget disease[J]. Am J Dermatopathol, 2006,28(1):84⁃86. doi: 10.1097/01.dad. 0000194052.65695.f1. |
[15] | Hutchings D, Windon A, Assarzadegan N, et al. Perianal Paget′s disease as spread from non⁃invasive colorectal adenomas[J]. Histopathology, 2021,78(2):276⁃280. doi: 10.1111/his.14218. |
[16] | Nowak MA, Guerriere⁃Kovach P, Pathan A, et al. Perianal Paget′s disease: distinguishing primary and secondary lesions using immunohistochemical studies including gross cystic disease fluid protein⁃15 and cytokeratin 20 expression[J]. Arch Pathol Lab Med, 1998,122(12):1077⁃1081. |
[17] | Liao X, Liu X, Fan X, et al. Perianal Paget′s disease: a clinicopathological and immunohistochemical study of 13 cases[J]. Diagn Pathol, 2020,15(1):29. doi: 10.1186/s13000⁃020⁃00952⁃w. |
[18] | Tekin B, Kundert P, Yang HH, et al. CDX2 expression in primary skin tumors⁃case series and review of the literature[J]. Hum Pathol, 2022,129:1⁃10. doi: 10.1016/j.humpath.2022.07. 013. |
[19] | Zhang G, Zhou S, Zhong W, et al. Whole⁃exome sequencing reveals frequent mutations in chromatin remodeling genes in mammary and extramammary Paget′s diseases[J]. J Invest Dermatol, 2019,139(4):789⁃795. doi: 10.1016/j.jid.2018.08.030. |
[20] | Kiniwa Y, Yasuda J, Saito S, et al. Identification of genetic alterations in extramammary Paget disease using whole exome analysis[J]. J Dermatol Sci, 2019,94(1):229⁃235. doi: 10.1016/j.jdermsci.2019.03.006. |
[21] | Kang Z, Xu F, Zhang QA, et al. Oncogenic mutations in extramammary Paget′s disease and their clinical relevance[J]. Int J Cancer, 2013,132(4):824⁃831. doi: 10.1002/ijc.27738. |
[22] | Kusaba Y, Kajihara I, Myangat TM, et al. Intertumor and intratumor heterogeneity of PIK3CA mutations in extramammary Paget′s disease[J]. J Dermatol, 2022,49(5):508⁃514. doi: 10. 1111/1346⁃8138.16343. |
[23] | Ishida Y, Kakiuchi N, Yoshida K, et al. Unbiased detection of driver mutations in extramammary Paget disease[J]. Clin Cancer Res, 2021,27(6):1756⁃1765. doi: 10.1158/1078⁃0432.CCR⁃20⁃3205. |
[24] | Takeichi T, Okuno Y, Matsumoto T, et al. Frequent FOXA1⁃activating mutations in extramammary Paget′s disease[J]. Cancers (Basel), 2020,12(4):820. doi: 10.3390/cancers12040820. |
[25] | Zhang Y, Zhang D, Li Q, et al. Nucleation of DNA repair factors by FOXA1 links DNA demethylation to transcriptional pioneering[J]. Nat Genet, 2016,48(9):1003⁃1013. doi: 10.1038/ng.3635. |
[26] | Sawamura S, Mijiddorj Myangat T, Kajihara I, et al. Genomic landscape of circulating tumour DNA in metastatic extramammary Paget′s disease[J]. Exp Dermatol, 2022,31(3):341⁃348. doi: 10.1111/exd.14476. |
[27] | Tanaka R, Sasajima Y, Tsuda H, et al. Concordance of the HER2 protein and gene status between primary and corresponding lymph node metastatic sites of extramammary Paget disease[J]. Clin Exp Metastasis, 2016,33(7):687⁃697. doi: 10.1007/s10585⁃016⁃9804⁃z. |
[28] | Maeda T, Kitamura S, Nishihara H, et al. Extramammary Paget′s disease patient⁃derived xenografts harboring ERBB2 S310F mutation show sensitivity to HER2⁃targeted therapies[J]. Oncogene, 2020,39(36):5867⁃5875. doi: 10.1038/s41388⁃020⁃01404⁃x. |
[29] | Bartoletti M, Mazzeo R, De Scordilli M, et al. Human epidermal growth factor receptor⁃2 (HER2) is a potential therapeutic target in extramammary Paget′s disease of the vulva[J]. Int J Gynecol Cancer, 2020,30(11):1672⁃1677. doi: 10.1136/ijgc⁃2020⁃001771. |
[30] | Tokuchi K, Maeda T, Kitamura S, et al. HER2⁃targeted antibody⁃drug conjugates display potent antitumor activities in preclinical extramammary Paget′s disease models: in vivo and immuno⁃histochemical analyses[J]. Cancers (Basel), 2022,14(14):3519. doi: 10.3390/cancers14143519. |
[31] | Liegl B, Horn LC, Moinfar F. Androgen receptors are frequently expressed in mammary and extramammary Paget′s disease[J]. Mod Pathol, 2005,18(10):1283⁃1288. doi: 10.1038/modpathol. 3800437. |
[32] | Azmahani A, Nakamura Y, Ozawa Y, et al. Androgen receptor, androgen⁃producing enzymes and their transcription factors in extramammary Paget disease[J]. Hum Pathol, 2015,46(11):1662⁃1669. doi: 10.1016/j.humpath.2015.07.007. |
[33] | Angelico G, Santoro A, Inzani F, et al. Hormonal environment and HER2 status in extra⁃mammary paget′s disease (eMPD): a systematic literature review and meta⁃analysis with clinical considerations[J]. Diagnostics (Basel), 2020,10(12):1040. doi: 10.3390/diagnostics10121040. |
[34] | Chang K, Li GX, Kong YY, et al. Chemokine receptors CXCR4 and CXCR7 are associated with tumor aggressiveness and prognosis in extramammary paget disease[J]. J Cancer, 2017,8(13):2471⁃2477. doi: 10.7150/jca.19127. |
[35] | Urata K, Kajihara I, Myangat TM, et al. Overexpression of cyclin⁃dependent kinase 4 protein in extramammary Paget′s disease[J]. J Dermatol, 2019,46(5):444⁃448. doi: 10.1111/1346⁃8138. 14858. |
[36] | Kitamura S, Yanagi T, Maeda T, et al. Cyclin⁃dependent kinase 4/6 inhibitors suppress tumor growth in extramammary Paget′s disease[J]. Cancer Sci, 2022,113(2):802⁃807. doi: 10.1111/cas.15234. |
[37] | Urano⁃Takaoka M, Sumida H, Miyagawa T, et al. Serum cytokeratin 18 as a metastatic and therapeutic marker for extramammary Paget′s disease[J]. Acta Derm Venereol, 2022,102:adv00636. doi: 10.2340/actadv.v101.866. |
[38] | Chen S, Nakahara T, Uchi H, et al. Immunohistochemical analysis of the mammalian target of rapamycin signalling pathway in extramammary Paget′s disease[J]. Br J Dermatol, 2009,161(2):357⁃363. doi: 10.1111/j.1365⁃2133.2009.09179.x. |
[39] | van der Linden M, van Esch E, Bulten J, et al. The immune cell infiltrate in the microenvironment of vulvar Paget disease[J]. Gynecol Oncol, 2018,151(3):453⁃459. doi: 10.1016/j.ygyno.2018. 09.026. |
[40] | Press JZ, Allison KH, Garcia R, et al. FOXP3+ regulatory T⁃cells are abundant in vulvar Paget′s disease and are associated with recurrence[J]. Gynecol Oncol, 2011,120(2):296⁃299. doi: 10.1016/j.ygyno.2010.10.019. |
[41] | González⁃Suárez E, Sanz⁃Moreno A. RANK as a therapeutic target in cancer[J]. FEBS J, 2016,283(11):2018⁃2033. doi: 10.1111/febs.13645. |
[42] | Kambayashi Y, Fujimura T, Furudate S, et al. The possible interaction between receptor activator of nuclear factor kappa⁃B ligand expressed by extramammary Paget cells and its ligand on dermal macrophages[J]. J Invest Dermatol, 2015,135(10):2547⁃2550. doi: 10.1038/jid.2015.199. |
[43] | Fujimura T, Kambayashi Y, Furudate S, et al. Receptor activator of NF⁃κB ligand promotes the production of CCL17 from RANK+ M2 macrophages[J]. J Invest Dermatol, 2015,135(11):2884⁃2887. doi: 10.1038/jid.2015.209. |
[44] | Karpathiou G, Chauleur C, Hathroubi S, et al. Expression of CD3, PD⁃L1 and CTLA⁃4 in mammary and extra⁃mammary Paget disease[J]. Cancer Immunol Immunother, 2018,67(8):1297⁃1303. doi: 10.1007/s00262⁃018⁃2189⁃x. |
[45] | Maeda T, Uehara J, Toyoshima R, et al. Neutrophil⁃to⁃lymphocyte ratio is a potential prognostic biomarker for extramammary Paget disease: a retrospective study[J]. J Dermatol, 2022,49(11):1188⁃1192. doi: 10.1111/1346⁃8138.16533. |
[46] | Kawaguchi A, Akiba J, Kondo R, et al. Programmed death⁃ligand 1 and programmed death⁃ligand 2 expression can affect prognosis in extramammary Paget′s disease[J]. Anticancer Res, 2021,41(1):219⁃226. doi: 10.21873/anticanres.14768. |
[47] | Chuang KC, Chang CR, Chang SH, et al. Imiquimod⁃induced ROS production disrupts the balance of mitochondrial dynamics and increases mitophagy in skin cancer cells[J]. J Dermatol Sci, 2020,98(3):152⁃162. doi: 10.1016/j.jdermsci.2020.03.009. |
[48] | Borella F, Preti M, Vieira⁃Baptista P, et al. Vulvar Paget′s disease: outcomes of 51 patients treated with imiquimod cream[J]. Maturitas, 2022,163:23⁃27. doi: 10.1016/j.maturitas.2022. 05.010. |
[49] | van der Linden M, van Hees CL, van Beurden M, et al. The Paget Trial: topical 5% imiquimod cream for noninvasive vulvar Paget disease[J]. Am J Obstet Gynecol, 2022,227(2):250.e1⁃250.e8. doi: 10.1016/j.ajog.2022.04.012. |
[1] | Chen Haotian, Liu Lian, Zhang Ting, Liu Qingfeng, Li Xiaoxue, Diao Ping, Jiang Xian. Port-wine stains: mechanisms underlying the development and progression [J]. Chinese Journal of Dermatology, 2024, 57(7): 661-664. |
[2] | Jiang Xian, Liu Lian, Zhang Ting. Treatment of port-wine stains: current status and prospects [J]. Chinese Journal of Dermatology, 2024, 57(7): 590-594. |
[3] | Feng Mengdi, Wang Wenqing. Regulatory roles of transcription factors and receptors in the pathogenesis of acne [J]. Chinese Journal of Dermatology, 2024, 57(6): 575-578. |
[4] | Yan Rufan, Liao Jieyue, Guo Ziyu, Yao Nan, Zhou Wenyu, Luo Shuaihantian, Zhang Guiying, Zhao Ming. Pathogenesis and targeted therapy of pemphigus [J]. Chinese Journal of Dermatology, 2024, 57(4): 374-378. |
[5] | Ju Qiang, Li Jiaqi. Acne vulgaris revisited: from pathogenesis to treatment strategies [J]. Chinese Journal of Dermatology, 2024, 57(4): 289-294. |
[6] | Zong Yangyongyi, Ma Chujun, Su Zhonglan. Eczematization following the treatment of psoriasis with biological agents: pathogenesis and management [J]. Chinese Journal of Dermatology, 2024, 0(3): 20220578-e20220578. |
[7] | Liu Tingwei, Meng Xiaoqi, Gu Duoduo, Pan Ruoxin, Zhang Yue, Xu Yang. Advances in the pathogenesis of rosacea [J]. Chinese Journal of Dermatology, 2024, 57(2): 186-190. |
[8] | Song Zhiqiang, Chen Qiquan, Ge Lan. Insights into the progress in targeted therapy of atopic dermatitis from the perspective of its pathogenesis [J]. Chinese Journal of Dermatology, 2023, 56(8): 718-723. |
[9] | Liang Yunsheng, Li Zhanhong, Wu Yibei. Progress in the treatment of chronic spontaneous urticaria: insights from the changes in the understanding of its pathogenesis [J]. Chinese Journal of Dermatology, 2023, 56(6): 552-558. |
[10] | Jiang Jiayi, Wang Daguang. Pathogenesis of nail damages secondary to systemic diseases [J]. Chinese Journal of Dermatology, 2023, 0(2): 20220078-e20220078. |
[11] | Chen Qitao, Li Yuqian, Shao Guanghui, Zhu Jing, Zhu Qilin, Li Zhongming, Du Xufeng, Fan Weixin. Erosive pustular dermatosis of the scalp [J]. Chinese Journal of Dermatology, 2023, 0(2): 20210803-e20210803. |
[12] | Wang Li, Wang Qianqiu, Zhang Ruili. Research progress in latent syphilis [J]. Chinese Journal of Dermatology, 2023, 0(2): 20220283-e20220283. |
[13] | Xie Deqiong, Yang Kaiying, Yang Yang, Chen Siyuan, Ji Yi. Long non-coding RNAs in infantile hemangioma [J]. Chinese Journal of Dermatology, 2023, 56(12): 1173-1176. |
[14] | Li Rong, Chen Kun, Zhang Jiaan. Mechanism of action of long non-coding RNA in cutaneous squamous cell carcinoma [J]. Chinese Journal of Dermatology, 2023, 56(10): 985-988. |
[15] | Liu Jin, Shen Zhengyu. Epigenetic regulation in psoriasis [J]. Chinese Journal of Dermatology, 2022, 55(9): 825-829. |