Chinese Journal of Dermatology ›› 2024, Vol. 57 ›› Issue (2): 186-190.doi: 10.35541/cjd.20230536
• Reviews • Previous Articles
Liu Tingwei, Meng Xiaoqi, Gu Duoduo, Pan Ruoxin, Zhang Yue, Xu Yang
Received:
2023-09-18
Revised:
2023-11-17
Online:
2024-02-15
Published:
2024-02-01
Contact:
Xu Yang
E-mail:yangxu@njmu.edu.cn
Liu Tingwei, Meng Xiaoqi, Gu Duoduo, Pan Ruoxin, Zhang Yue, Xu Yang. Advances in the pathogenesis of rosacea[J]. Chinese Journal of Dermatology, 2024, 57(2): 186-190.doi:10.35541/cjd.20230536
[1] | van Zuuren EJ, Arents B, van der Linden M, et al. Rosacea: new concepts in classification and treatment[J]. Am J Clin Dermatol, 2021,22(4):457⁃465. doi: 10.1007/s40257⁃021⁃00595⁃7. |
[2] | Chang HC, Huang YC, Lien YJ, et al. Association of rosacea with depression and anxiety: a systematic review and meta⁃analysis[J]. J Affect Disord, 2022,299:239⁃245. doi: 10.1016/j.jad.2021. 12.008. |
[3] | Gether L, Overgaard LK, Egeberg A, et al. Incidence and prevalence of rosacea: a systematic review and meta⁃analysis[J]. Br J Dermatol, 2018,179(2):282⁃289. doi: 10.1111/bjd.16481. |
[4] | Thiboutot D, Anderson R, Cook⁃Bolden F, et al. Standard management options for rosacea: the 2019 update by the National Rosacea Society Expert Committee[J]. J Am Acad Dermatol, 2020,82(6):1501⁃1510. doi: 10.1016/j.jaad.2020.01. 077. |
[5] | Xiao W, Li J, Huang X, et al. Mediation roles of neutrophils and high⁃density lipoprotein (HDL) on the relationship between HLA⁃DQB1 and rosacea[J]. Ann Med, 2022,54(1):1530⁃1537. doi: 10.1080/07853890.2022.2077427. |
[6] | Deng Z, Chen M, Zhao Z, et al. Whole genome sequencing identifies genetic variants associated with neurogenic inflammation in rosacea[J]. Nat Commun, 2023,14(1):3958. doi: 10.1038/s41467⁃023⁃39761⁃2. |
[7] | 中华医学会皮肤性病学分会玫瑰痤疮研究中心, 中国医师协会皮肤科医师分会玫瑰痤疮专业委员会. 中国玫瑰痤疮诊疗指南(2021版)[J]. 中华皮肤科杂志, 2021,54(4):279⁃288. doi: 10.35541/cjd.20201078. |
[8] | Zhang C, Kang Y, Zhang Z, et al. Long⁃term administration of LL⁃37 can induce irreversible rosacea⁃like lesion[J]. Curr Issues Mol Biol, 2023,45(4):2703⁃2716. doi: 10.3390/cimb45040177. |
[9] | Yoon SH, Hwang I, Lee E, et al. Antimicrobial peptide LL⁃37 drives rosacea⁃like skin inflammation in an NLRP3⁃dependent manner[J]. J Invest Dermatol, 2021,141(12):2885⁃2894.e5. doi: 10.1016/j.jid.2021.02.745. |
[10] | Deng Z, Chen M, Liu Y, et al. A positive feedback loop between mTORC1 and cathelicidin promotes skin inflammation in rosacea[J]. EMBO Mol Med, 2021,13(5):e13560. doi: 10.15252/emmm. 202013560. |
[11] | Shih YH, Xu J, Kumar A, et al. Alterations of immune and keratinization gene expression in papulopustular rosacea by whole transcriptome analysis[J]. J Invest Dermatol, 2020,140(5):1100⁃1103.e4. doi: 10.1016/j.jid.2019.09.021. |
[12] | Sun YH, Man XY, Xuan XY, et al. Tofacitinib for the treatment of erythematotelangiectatic and papulopustular rosacea: a retrospective case series[J]. Dermatol Ther, 2022,35(11):e15848. doi: 10.1111/dth.15848. |
[13] | Wang L, Wang YJ, Hao D, et al. The theranostics role of mast cells in the pathophysiology of rosacea[J]. Front Med (Lausanne), 2019,6:324. doi: 10.3389/fmed.2019.00324. |
[14] | Muto Y, Wang Z, Vanderberghe M, et al. Mast cells are key mediators of cathelicidin⁃initiated skin inflammation in rosacea[J]. J Invest Dermatol, 2014,134(11):2728⁃2736. doi: 10.1038/jid.2014.222. |
[15] | Mascarenhas NL, Wang Z, Chang YL, et al. TRPV4 mediates mast cell activation in cathelicidin⁃induced rosacea inflammation[J]. J Invest Dermatol, 2017,137(4):972⁃975. doi: 10.1016/j.jid.2016.10.046. |
[16] | Al Hamwi G, Riedel YK, Clemens S, et al. MAS⁃related G protein⁃coupled receptors X (MRGPRX): Orphan GPCRs with potential as targets for future drugs[J]. Pharmacol Ther, 2022,238:108259. doi: 10.1016/j.pharmthera.2022.108259. |
[17] | Cao C, Kang HJ, Singh I, et al. Structure, function and pharmacology of human itch GPCRs[J]. Nature, 2021,600(7887):170⁃175. doi: 10.1038/s41586⁃021⁃04126⁃6. |
[18] | Zhou L, Zhao H, Zhao H, et al. GBP5 exacerbates rosacea⁃like skin inflammation by skewing macrophage polarization towards M1 phenotype through the NF⁃κB signalling pathway[J]. J Eur Acad Dermatol Venereol, 2023,37(4):796⁃809. doi: 10.1111/jdv.18725. |
[19] | Liu Z, Zhang J, Jiang P, et al. Paeoniflorin inhibits the macrophage⁃related rosacea⁃like inflammatory reaction through the suppressor of cytokine signaling 3⁃apoptosis signal⁃regulating kinase 1⁃p38 pathway[J]. Medicine (Baltimore), 2021,100(3):e23986. doi: 10.1097/MD.0000000000023986. |
[20] | Zhao Z, Liu T, Liang Y, et al. N2⁃polarized neutrophils reduce inflammation in rosacea by regulating vascular factors and proliferation of CD4+ T cells[J]. J Invest Dermatol, 2022,142(7):1835⁃1844.e2. doi: 10.1016/j.jid.2021.12.009. |
[21] | Buhl T, Sulk M, Nowak P, et al. Molecular and morphological characterization of inflammatory infiltrate in rosacea reveals activation of Th1/Th17 pathways[J]. J Invest Dermatol, 2015,135(9):2198⁃2208. doi: 10.1038/jid.2015.141. |
[22] | Holmes AD, Steinhoff M. Integrative concepts of rosacea pathophysiology, clinical presentation and new therapeutics[J]. Exp Dermatol, 2017,26(8):659⁃667. doi: 10.1111/exd.13143. |
[23] | Sinikumpu SP, Vähänikkilä H, Jokelainen J, et al. Male patients with rosacea have increased risk for migraine: a population⁃based study[J]. Br J Dermatol, 2021,185(5):1058⁃1061. doi: 10.1111/bjd.20578. |
[24] | Liu Y, Xu Y, Guo Z, et al. Identifying the neural basis for rosacea using positron emission tomography⁃computed tomography cerebral functional imaging analysis: a cross⁃sectional study[J]. Skin Res Technol, 2022,28(5):708⁃713. doi: 10.1111/srt.13171. |
[25] | 刘乙萱, 姜沛彧,刘韵祎, 等. 玫瑰痤疮神经源性炎症及肉毒毒素治疗相关机制的研究进展[J]. 中华皮肤科杂志, 2022,55(6):552⁃554. doi:10.35541/cjd.20200266. |
[26] | Li M, Tao M, Zhang Y, et al. Neurogenic rosacea could be a small fiber neuropathy[J]. Front Pain Res (Lausanne), 2023,4:1122134. doi: 10.3389/fpain.2023.1122134. |
[27] | Choi JE, Di Nardo A. Skin neurogenic inflammation[J]. Semin Immunopathol, 2018,40(3):249⁃259. doi: 10.1007/s00281⁃018⁃0675⁃z. |
[28] | Kim HB, Na EY, Yun SJ, et al. The effect of capsaicin on neuroinflammatory mediators of rosacea[J]. Ann Dermatol, 2022,34(4):261⁃269. doi: 10.5021/ad.21.223. |
[29] | Marek⁃Jozefowicz L, Nedoszytko B, Grochocka M, et al. Molecular mechanisms of neurogenic inflammation of the skin[J]. Int J Mol Sci, 2023,24(5):5001. doi: 10.3390/ijms2405 5001. |
[30] | Jovanovic Z, Angabini N, Ehlen S, et al. Efficacy and tolerability of a cosmetic skin care product with trans⁃4⁃t⁃butylcyclohexanol and licochalcone A in subjects with sensitive skin prone to redness and rosacea[J]. J Drugs Dermatol, 2017,16(6):605⁃610. |
[31] | Kim HO, Kang SY, Kim KE, et al. Neurogenic rosacea in Korea[J]. J Dermatol, 2021,48(1):49⁃55. doi: 10.1111/1346⁃8138. 15629. |
[32] | Zhou X, Su Y, Wu S, et al. The temperature⁃sensitive receptors TRPV4 and TRPM8 have important roles in the pruritus of rosacea[J]. J Dermatol Sci, 2022,108(2):68⁃76. doi: 10.1016/j.jdermsci.2022.11.004. |
[33] | Liu T, Xiao W, Chen M, et al. Aberrant amino acid metabolism promotes neurovascular reactivity in rosacea[J]. JCI Insight, 2022,7(22):e161870. doi: 10.1172/jci.insight.161870. |
[34] | Kim J, Choi S, Choi S, et al. Contact hypersensitivity and Demodex mite infestation in patients with rosacea: a retro⁃spective cohort analysis[J]. Eur J Dermatol, 2022,32(6):716⁃723. doi: 10.1684/ejd.2022.4358. |
[35] | Lee SG, Kim J, Lee YI, et al. Cutaneous neurogenic inflammation mediated by TRPV1⁃NGF⁃TRKA pathway activation in rosacea is exacerbated by the presence of Demodex mites[J]. J Eur Acad Dermatol Venereol, 2023,37(12):2589⁃2600. doi: 10.1111/jdv. 19449. |
[36] | Zaidi AK, Spaunhurst K, Sprockett D, et al. Characterization of the facial microbiome in twins discordant for rosacea[J]. Exp Dermatol, 2018,27(3):295⁃298. doi: 10.1111/exd.13491. |
[37] | Rainer BM, Thompson KG, Antonescu C, et al. Characterization and analysis of the skin microbiota in rosacea: a case⁃control study[J]. Am J Clin Dermatol, 2020,21(1):139⁃147. doi: 10. 1007/s40257⁃019⁃00471⁃5. |
[38] | Zhang Y, Zhou Y, Humbert P, et al. Effect on the skin microbiota of oral minocycline for rosacea[J]. Acta Derm Venereol, 2023,103:adv10331. doi: 10.2340/actadv.v103.10331. |
[39] | Mahmud MR, Akter S, Tamanna SK, et al. Impact of gut microbiome on skin health: gut⁃skin axis observed through the lenses of therapeutics and skin diseases[J]. Gut Microbes, 2022,14(1):2096995. doi: 10.1080/19490976.2022.2096995. |
[40] | Sinha S, Lin G, Ferenczi K. The skin microbiome and the gut⁃skin axis[J]. Clin Dermatol, 2021,39(5):829⁃839. doi: 10.1016/j.clindermatol.2021.08.021. |
[41] | Baldwin H, Alexis AF, Andriessen A, et al. Evidence of barrier deficiency in rosacea and the importance of integrating OTC skincare products into treatment regimens[J]. J Drugs Dermatol, 2021,20(4):384⁃392. doi: 10.36849/JDD.2021.5861. |
[42] | Medgyesi B, Dajnoki Z, Béke G, et al. Rosacea is characterized by a profoundly diminished skin barrier[J]. J Invest Dermatol, 2020,140(10):1938⁃1950.e5. doi: 10.1016/j.jid.2020.02.025. |
[43] | Passeron T, Zouboulis CC, Tan J, et al. Adult skin acute stress responses to short⁃term environmental and internal aggression from exposome factors[J]. J Eur Acad Dermatol Venereol, 2021,35(10):1963⁃1975. doi: 10.1111/jdv.17432. |
[44] | Deng Z, Chen M, Xie H, et al. Claudin reduction may relate to an impaired skin barrier in rosacea[J]. J Dermatol, 2019,46(4):314⁃321. doi: 10.1111/1346⁃8138.14792. |
[45] | Wang Y, Wang B, Huang Y, et al. Multi⁃transcriptomic analysis and experimental validation implicate a central role of STAT3 in skin barrier dysfunction induced aggravation of rosacea[J]. J Inflamm Res, 2022,15:2141⁃2156. doi: 10.2147/JIR.S356551. |
[46] | Suhng E, Kim BH, Choi YW, et al. Increased expression of IL⁃33 in rosacea skin and UVB⁃irradiated and LL⁃37⁃treated HaCaT cells[J]. Exp Dermatol, 2018,27(9):1023⁃1029. doi: 10.1111/exd.13702. |
[47] | Kulkarni NN, Takahashi T, Sanford JA, et al. Innate immune dysfunction in rosacea promotes photosensitivity and vascular adhesion molecule expression[J]. J Invest Dermatol, 2020,140(3):645⁃655.e6. doi: 10.1016/j.jid.2019.08.436. |
[48] | Sun Y, Chen L, Wang H, et al. Activation of aryl hydrocarbon receptor ameliorates rosacea⁃like eruptions in mice and suppresses the TLR signaling pathway in LL⁃37⁃induced HaCaT cells[J]. Toxicol Appl Pharmacol, 2022,451:116189. doi: 10. 1016/j.taap.2022.116189. |
[1] | Zong Yangyongyi, Ma Chujun, Su Zhonglan. Eczematization following the treatment of psoriasis with biological agents: pathogenesis and management [J]. Chinese Journal of Dermatology, 2024, 0(3): 20220578-e20220578. |
[2] | Zhang Yue, Tao Meng, Li Min, Jiang Peiyu, Liu Yunyi, Liu Yixuan, Pan Ruoxin, Xu Yang. Severity assessment criteria for rosacea [J]. Chinese Journal of Dermatology, 2024, 57(2): 182-185. |
[3] | Pan Ruoxin, Gu Duoduo, Zhang Yue, Li Min, Tao Meng, Xu Yang. Metabolomics in rosacea [J]. Chinese Journal of Dermatology, 2024, 57(2): 178-181. |
[4] | Wei Ziyu, Yang Yong. Role of ion channels in the pathogenesis of rosacea [J]. Chinese Journal of Dermatology, 2024, 57(2): 174-177. |
[5] | Li Ji, Xie Hongfu. How to avoid misdiagnosis of rosacea [J]. Chinese Journal of Dermatology, 2024, 57(2): 119-122. |
[6] | Jiang Xian, Song Deyu. Insights into rosacea from the perspective of psychosomatic medicine [J]. Chinese Journal of Dermatology, 2024, 57(2): 123-126. |
[7] | Na Jun, Li Ruoyu, Zhong Shaomin, Yang Li, Wu Yan. Diagnosis and treatment of rosacea in the real world: a survey on the current status [J]. Chinese Journal of Dermatology, 2024, 57(2): 127-133. |
[8] | Ma Guangrong, Xie Hongfu, Liu Jiashuang, Zhou Zhonglian, Zou Songqi, Huang Yingxue, Li Ji. Small intestinal bacterial overgrowth in patients with rosacea: prevalence and clinical features [J]. Chinese Journal of Dermatology, 2024, 57(2): 134-140. |
[9] | Zhang Xiaodong, Wang Manya, Zhu Yingjie, Luo Tiande, Liu Xiaoming. Application of fluorescence staining in the detection of Demodex mites in the facial skin [J]. Chinese Journal of Dermatology, 2023, 56(8): 766-769. |
[10] | Song Zhiqiang, Chen Qiquan, Ge Lan. Insights into the progress in targeted therapy of atopic dermatitis from the perspective of its pathogenesis [J]. Chinese Journal of Dermatology, 2023, 56(8): 718-723. |
[11] | Tao Meng, Li Min, Liu Yixuan, Liu Yunyi, Jiang Peiyu, Zhang Jiawen, Nan Yuqing, Xu Yang. Correlation between rosacea and neuropsychiatric diseases [J]. Chinese Journal of Dermatology, 2023, 56(7): 693-697. |
[12] | Mi Shuhong, Yu Yanqin, Hao Jinqi, Li Wei, Zhang Yang, Jia Ximei, Huang Yuxian, Sun Huaiyu, Shi Jihai. Analysis of imaging characteristics of papulopustular rosacea by high-frequency ultrasound combined with color Doppler flow imaging [J]. Chinese Journal of Dermatology, 2023, 56(6): 540-544. |
[13] | Liang Yunsheng, Li Zhanhong, Wu Yibei. Progress in the treatment of chronic spontaneous urticaria: insights from the changes in the understanding of its pathogenesis [J]. Chinese Journal of Dermatology, 2023, 56(6): 552-558. |
[14] | Li Rong, Zhang Jiaan, Chen Kun. Photoelectric therapy for rosacea [J]. Chinese Journal of Dermatology, 2023, 56(5): 468-470. |
[15] | Li Jiaqi, Ye Feng, Ju Qiang. Symbiotic homeostasis of Staphylococcus epidermidis is associated with common skin disorders [J]. Chinese Journal of Dermatology, 2023, 56(5): 459-462. |
|