Chinese Journal of Dermatology ›› 2024, Vol. 57 ›› Issue (2): 174-177.doi: 10.35541/cjd.20230374
• Reviews • Previous Articles Next Articles
Wei Ziyu, Yang Yong
Received:
2023-06-27
Revised:
2023-09-15
Online:
2024-02-15
Published:
2024-02-01
Contact:
Yang Yong
E-mail:yyang@pumcderm.cams.cn
Supported by:
Wei Ziyu, Yang Yong. Role of ion channels in the pathogenesis of rosacea[J]. Chinese Journal of Dermatology, 2024, 57(2): 174-177.doi:10.35541/cjd.20230374
[1] | 中华医学会皮肤性病学分会玫瑰痤疮研究中心,中国医师协会皮肤科医师分会玫瑰痤疮专业委员会. 中国玫瑰痤疮诊疗指南(2021版)[J]. 中华皮肤科杂志, 2021,54(4):279⁃288. doi:10.35541/cjd.20201078. |
[2] | Schwab VD, Sulk M, Seeliger S, et al. Neurovascular and neuroimmune aspects in the pathophysiology of rosacea[J]. J Investig Dermatol Symp Proc, 2011,15(1):53⁃62. doi: 10.1038/jidsymp.2011.6. |
[3] | Aubdool AA, Brain SD. Neurovascular aspects of skin neurogenic inflammation[J]. J Investig Dermatol Symp Proc, 2011,15(1):33⁃39. doi: 10.1038/jidsymp.2011.8. |
[4] | Mahmoud O, Soares GB, Yosipovitch G. Transient receptor potential channels and itch[J]. Int J Mol Sci, 2022,24(1):420. doi: 10.3390/ijms24010420. |
[5] | Caterina MJ, Pang Z. TRP channels in skin biology and pathophysiology[J]. Pharmaceuticals(Basel), 2016,9(4):77. doi: 10.3390/ph9040077. |
[6] | Song Z, Chen X, Zhao Q, et al. Hair loss caused by gain⁃of⁃function mutant TRPV3 is associated with premature differentiation of follicular keratinocytes[J]. J Invest Dermatol, 2021,141(8):1964⁃1974. doi: 10.1016/j.jid.2020.11.036. |
[7] | Marek⁃Jozefowicz L, Nedoszytko B, Grochocka M, et al. Molecular mechanisms of neurogenic inflammation of the skin[J]. Int J Mol Sci, 2023,24(5):5001. doi: 10.3390/ijms24055001. |
[8] | Zhao J, Munanairi A, Liu XY, et al. PAR2 mediates itch via TRPV3 signaling in keratinocytes[J]. J Invest Dermatol, 2020,140(8):1524⁃1532. doi: 10.1016/j.jid.2020.01.012. |
[9] | Lin Z, Chen Q, Lee M, et al. Exome sequencing reveals mutations in TRPV3 as a cause of Olmsted syndrome[J]. Am J Hum Genet, 2012,90(3):558⁃564. doi: 10.1016/j.ajhg.2012.02.006. |
[10] | Zhong W, Hu L, Cao X, et al. Genotype⁃phenotype correlation of TRPV3⁃related Olmsted syndrome[J]. J Invest Dermatol, 2021,141(3):545⁃554. doi: 10.1016/j.jid.2020.06.035. |
[11] | Caterina MJ, Schumacher MA, Tominaga M, et al. The capsaicin receptor: a heat⁃activated ion channel in the pain pathway[J]. Nature, 1997,389(6653):816⁃824. doi: 10.1038/39807. |
[12] | Molot J, Sears M, Anisman H. Multiple chemical sensitivity: it′s time to catch up to the science[J]. Neurosci Biobehav Rev, 2023,151:105227. doi: 10.1016/j.neubiorev.2023.105227. |
[13] | Sulk M, Seeliger S, Aubert J, et al. Distribution and expression of non⁃neuronal transient receptor potential(TRPV) ion channels in rosacea[J]. J Invest Dermatol, 2012,132(4):1253⁃1262. doi: 10.1038/jid.2011.424. |
[14] | Kim HB, Na EY, Yun SJ, et al. The effect of capsaicin on neuroinflammatory mediators of rosacea[J]. Ann Dermatol, 2022,34(4):261⁃269. doi: 10.5021/ad.21.223. |
[15] | Steinhoff M, Buddenkotte J, Aubert J, et al. Clinical, cellular, and molecular aspects in the pathophysiology of rosacea[J]. J Investig Dermatol Symp Proc, 2011,15(1):2⁃11. doi: 10.1038/jidsymp.2011.7. |
[16] | Tang L, Gao J, Cao X, et al. TRPV1 mediates itch⁃associated scratching and skin barrier dysfunction in DNFB⁃induced atopic dermatitis mice[J]. Exp Dermatol, 2022,31(3):398⁃405. doi: 10. 1111/exd.14464. |
[17] | Shin SM, Baek EJ, Oh DY, et al. Functional validation of co⁃culture model of human keratinocytes and neuronal cell line for sensitive skin by using transient receptor potential channel vanilloid subfamily member 1 antagonist[J]. Skin Res Technol, 2023,29(1):e13275. doi: 10.1111/srt.13275. |
[18] | Zhou LD, Lu YN, Liu Q, et al. Modulation of TRPV1 function by Citrus reticulata(tangerine) fruit extract for the treatment of sensitive skin[J]. J Cosmet Dermatol, 2023,22(4):1369⁃1376. doi: 10.1111/jocd.15578. |
[19] | Srour J, Bengel J, Linden T, et al. Efficacy of a skin care cream with TRPV1 inhibitor 4⁃t⁃butylcyclohexanol in the topical therapy of perioral dermatitis[J]. J Cosmet Dermatol, 2020,19(6):1409⁃1414. doi: 10.1111/jocd.13175. |
[20] | Oh S, Son M, Park J, et al. Radiofrequency irradiation modulates TRPV1⁃related burning sensation in rosacea[J]. Molecules, 2021,26(5):1424. doi: 10.3390/molecules26051424. |
[21] | Mascarenhas NL, Wang Z, Chang YL, et al. TRPV4 mediates mast cell activation in cathelicidin⁃induced rosacea inflammation[J]. J Invest Dermatol, 2017,137(4):972⁃975. doi: 10.1016/j.jid.2016.10.046. |
[22] | Wang LN, Wang XZ, Li YJ, et al. Activation of subcutaneous mast cells in acupuncture points triggers analgesia[J]. Cells, 2022,11(5):809. doi: 10.3390/cells11050809. |
[23] | Woźniak E, Owczarczyk⁃Saczonek A, Lange M, et al. The role of mast cells in the induction and maintenance of inflammation in selected skin diseases[J]. Int J Mol Sci, 2023,24(8):7021. doi: 10.3390/ijms24087021. |
[24] | Muto Y, Wang Z, Vanderberghe M, et al. Mast cells are key mediators of cathelicidin⁃initiated skin inflammation in rosacea[J]. J Invest Dermatol, 2014,134(11):2728⁃2736. doi: 10.1038/jid.2014.222. |
[25] | Peier AM, Reeve AJ, Andersson DA, et al. A heat⁃sensitive TRP channel expressed in keratinocytes[J]. Science, 2002,296(5575):2046⁃2049. doi: 10.1126/science.1073140. |
[26] | Um JY, Kang SY, Kim HJ, et al. Transient receptor potential vanilloid⁃3(TRPV3) channel induces dermal fibrosis via the TRPV3/TSLP/Smad2/3 pathways in dermal fibroblasts[J]. J Dermatol Sci, 2020,97(2):117⁃124. doi: 10.1016/j.jdermsci.2019. 12.011. |
[27] | Fromy B, Josset⁃Lamaugarny A, Aimond G, et al. Disruption of TRPV3 impairs heat⁃evoked vasodilation and thermoregulation: a critical role of CGRP[J]. J Invest Dermatol, 2018,138(3):688⁃696. doi: 10.1016/j.jid.2017.10.006. |
[28] | Huang Y, Yan S, Xie H, et al. Health related quality of life of rosacea patients in China assessed by dermatology life quality index and willingness to pay[J]. Patient Prefer Adherence, 2022,16:659⁃670. doi: 10.2147/PPA.S345258. |
[29] | Fan J, Hu L, Yue Z, et al. Structural basis of TRPV3 inhibition by an antagonist[J]. Nat Chem Biol, 2023,19(1):81⁃90. doi: 10. 1038/s41589⁃022⁃01166⁃5. |
[30] | Qi H, Shi Y, Wu H, et al. Inhibition of temperature⁃sensitive TRPV3 channel by two natural isochlorogenic acid isomers for alleviation of dermatitis and chronic pruritus[J]. Acta Pharm Sin B, 2022,12(2):723⁃734. doi: 10.1016/j.apsb.2021.08.002. |
[31] | Han Y, Luo A, Kamau PM, et al. A plant⁃derived TRPV3 inhibitor suppresses pain and itch[J]. Br J Pharmacol, 2021,178(7):1669⁃1683. doi: 10.1111/bph.15390. |
[32] | Lee WJ, Shim WS. Cutaneous neuroimmune interactions of TSLP and TRPV4 play pivotal roles in dry skin⁃induced pruritus[J]. Front Immunol, 2021,12:772941. doi: 10.3389/fimmu.2021. 772941. |
[33] | Zhou X, Su Y, Wu S, et al. The temperature⁃sensitive receptors TRPV4 and TRPM8 have important roles in the pruritus of rosacea[J]. J Dermatol Sci, 2022,108(2):68⁃76. doi: 10.1016/j.jdermsci.2022.11.004. |
[34] | Maglie R, Souza Monteiro de Araujo D, Antiga E, et al. The role of TRPA1 in skin physiology and pathology[J]. Int J Mol Sci, 2021,22(6):3065. doi: 10.3390/ijms22063065. |
[35] | Kataoka Y, Kenny GP, Nishiyasu T, et al. TRPA1 channel activation with cinnamaldehyde induces cutaneous vasodilation through NOS, but not COX and KCa channel, mechanisms in humans[J]. J Cardiovasc Pharmacol, 2022,79(3):375⁃382. doi: 10.1097/FJC.0000000000001188. |
[36] | Yin Y, Zhang F, Feng S, et al. Activation mechanism of the mouse cold⁃sensing TRPM8 channel by cooling agonist and PIP(2)[J]. Science, 2022,378(6616):eadd1268. doi: 10.1126/science. add1268. |
[37] | Huang SS, Su HH, Chien SY, et al. Activation of peripheral TRPM8 mitigates ischemic stroke by topically applied menthol[J]. J Neuroinflammation, 2022,19(1):192. doi: 10.1186/s12974⁃ 022⁃02553⁃4. |
[38] | Martinowich K, Das D, Sripathy SR, et al. Evaluation of Na(v)1.8 as a therapeutic target for Pitt Hopkins syndrome[J]. Mol Psychiatry, 2023,28(1):76⁃82. doi: 10.1038/s41380⁃022⁃01811⁃4. |
[39] | Sun PY, Li HG, Xu QY, et al. Lidocaine alleviates inflammation and pruritus in atopic dermatitis by blocking different population of sensory neurons[J]. Br J Pharmacol, 2023,180(10):1339⁃1361. doi: 10.1111/bph.16012. |
[40] | Zhang Y, Li Y, Zhou L, et al. Nav1.8 in keratinocytes contributes to ROS⁃mediated inflammation in inflammatory skin diseases[J]. Redox Biol, 2022,55:102427. doi: 10.1016/j.redox.2022.10 2427. |
[41] | Tsukita S, Tanaka H, Tamura A. The claudins: from tight junctions to biological systems[J]. Trends Biochem Sci, 2019,44(2):141⁃152. doi: 10.1016/j.tibs.2018.09.008. |
[42] | Kirschner N, Rosenthal R, Furuse M, et al. Contribution of tight junction proteins to ion, macromolecule, and water barrier in keratinocytes[J]. J Invest Dermatol, 2013,133(5):1161⁃1169. doi: 10.1038/jid.2012.507. |
[43] | Deng Z, Chen M, Xie H, et al. Claudin reduction may relate to an impaired skin barrier in rosacea[J]. J Dermatol, 2019,46(4):314⁃321. doi: 10.1111/1346⁃8138.14792. |
[1] | Zhang Yue, Tao Meng, Li Min, Jiang Peiyu, Liu Yunyi, Liu Yixuan, Pan Ruoxin, Xu Yang. Severity assessment criteria for rosacea [J]. Chinese Journal of Dermatology, 2024, 57(2): 182-185. |
[2] | Pan Ruoxin, Gu Duoduo, Zhang Yue, Li Min, Tao Meng, Xu Yang. Metabolomics in rosacea [J]. Chinese Journal of Dermatology, 2024, 57(2): 178-181. |
[3] | Liu Tingwei, Meng Xiaoqi, Gu Duoduo, Pan Ruoxin, Zhang Yue, Xu Yang. Advances in the pathogenesis of rosacea [J]. Chinese Journal of Dermatology, 2024, 57(2): 186-190. |
[4] | Li Ji, Xie Hongfu. How to avoid misdiagnosis of rosacea [J]. Chinese Journal of Dermatology, 2024, 57(2): 119-122. |
[5] | Jiang Xian, Song Deyu. Insights into rosacea from the perspective of psychosomatic medicine [J]. Chinese Journal of Dermatology, 2024, 57(2): 123-126. |
[6] | Na Jun, Li Ruoyu, Zhong Shaomin, Yang Li, Wu Yan. Diagnosis and treatment of rosacea in the real world: a survey on the current status [J]. Chinese Journal of Dermatology, 2024, 57(2): 127-133. |
[7] | Ma Guangrong, Xie Hongfu, Liu Jiashuang, Zhou Zhonglian, Zou Songqi, Huang Yingxue, Li Ji. Small intestinal bacterial overgrowth in patients with rosacea: prevalence and clinical features [J]. Chinese Journal of Dermatology, 2024, 57(2): 134-140. |
[8] | Zhang Xiaodong, Wang Manya, Zhu Yingjie, Luo Tiande, Liu Xiaoming. Application of fluorescence staining in the detection of Demodex mites in the facial skin [J]. Chinese Journal of Dermatology, 2023, 56(8): 766-769. |
[9] | Tao Meng, Li Min, Liu Yixuan, Liu Yunyi, Jiang Peiyu, Zhang Jiawen, Nan Yuqing, Xu Yang. Correlation between rosacea and neuropsychiatric diseases [J]. Chinese Journal of Dermatology, 2023, 56(7): 693-697. |
[10] | Mi Shuhong, Yu Yanqin, Hao Jinqi, Li Wei, Zhang Yang, Jia Ximei, Huang Yuxian, Sun Huaiyu, Shi Jihai. Analysis of imaging characteristics of papulopustular rosacea by high-frequency ultrasound combined with color Doppler flow imaging [J]. Chinese Journal of Dermatology, 2023, 56(6): 540-544. |
[11] | Li Rong, Zhang Jiaan, Chen Kun. Photoelectric therapy for rosacea [J]. Chinese Journal of Dermatology, 2023, 56(5): 468-470. |
[12] | Li Jiaqi, Ye Feng, Ju Qiang. Symbiotic homeostasis of Staphylococcus epidermidis is associated with common skin disorders [J]. Chinese Journal of Dermatology, 2023, 56(5): 459-462. |
[13] | Wang Xiaoyan, Zhang Jiawen, Liu Yunyi, Liu Yixuan, Jiang Peiyu, Li Min, Tao Meng, Xu Yang. Skin imaging and noninvasive measurements of rosacea [J]. Chinese Journal of Dermatology, 2023, 56(4): 361-364. |
[14] | Chen Lianghong, Sun Yan, Wang Jingyu, Wu Yan. Benvitimod for the treatment of dermatoses [J]. Chinese Journal of Dermatology, 2023, 0(2): 20210875-e20210875. |
[15] | Sun Jing, Xu Yingnan, Lin Tong, Xue Jinsong. Analysis of clinical treatment outcomes of ocular lesions in 28 cases of severe ocular rosacea [J]. Chinese Journal of Dermatology, 2023, 56(2): 142-145. |
|