Chinese Journal of Dermatology ›› 2025, e20240125.doi: 10.35541/cjd.20240125
• Reviews • Previous Articles Next Articles
Li Jiaming1, Wang Peng2, Kang Xiaojing2
Received:
2024-03-11
Revised:
2024-10-27
Online:
2025-01-24
Published:
2025-05-26
Contact:
Kang Xiaojing
E-mail:drkangxj666@163.com
Supported by:
Li Jiaming, Wang Peng, Kang Xiaojing. Ferroptosis mechanisms and related intervention measures in malignant skin tumors[J]. Chinese Journal of Dermatology,2025,e20240125. doi:10.35541/cjd.20240125
[1] | Coelho R, Cheong SL. Basal cell carcinoma excision guided by dermoscopy: a retrospective study in Macau[J]. Int J Dermatol Venereol, 2023,6(3):147⁃149. doi: 10.1097/JD9.0000000000000227. |
[2] | Guo WN, Li CY. Linking cellular metabolism to epigenetics in melanoma[J]. Int J Dermatol Venereol, 2021,4(3):168⁃173. doi: 10.1097/JD9.000000000 0000191. |
[3] | Li HY, Ren K, Wang C, et al. Skin organoid research progress and potential applications[J]. Int J Dermatol Venereol, 2022,5(2):101⁃106. doi: 10.1097/JD9.0000000000000201. |
[4] | Zhou Q, Meng Y, Li D, et al. Ferroptosis in cancer: from molecular mechanisms to therapeutic strategies[J]. Signal Transduct Target Ther, 2024,9(1):55. doi: 10.1038/s41392⁃024⁃01769⁃5. |
[5] | Bezrookove V, Kianian S, McGeever L, et al. The molecular evolution of melanoma distant metastases[J]. J Invest Dermatol, 2024:S0022⁃0202X(24)00271⁃00279. doi: 10. 1016/j.jid.2024. 03.029. |
[6] | Ubellacker JM, Tasdogan A, Ramesh V, et al. Lymph protects metastasizing melanoma cells from ferroptosis[J]. Nature, 2020,585(7823):113⁃118. doi: 10.1038/s41586⁃020⁃2623⁃z. |
[7] | Paris J, Wilhelm C, Lebbé C, et al. PROM2 overexpression induces metastatic potential through epithelial⁃to⁃mesenchymal transition and ferroptosis resistance in human cancers[J]. Clin Transl Med, 2024,14(3):e1632. doi: 10.1002/ctm2.1632. |
[8] | Fujimura T, Yoshino K, Kato H, et al. PhaseⅡ, multicenter study of plasminogen activator inhibitor⁃1 inhibitor (TM5614) plus nivolumab for treating anti⁃PD⁃1 antibody⁃refractory malignant melanoma: TM5614⁃MM trial[J]. Br J Dermatol, 2024,191(5):691⁃697. doi: 10.1093/bjd/ljae231. |
[9] | Wang H, Zhang H, Chen Y, et al. Targeting Wnt/β⁃catenin signaling exacerbates ferroptosis and increases the efficacy of melanoma immunotherapy via the regulation of MITF[J]. Cells, 2022,11(22):3580. doi: 10.3390/cells11223580. |
[10] | Luo M, Wu L, Zhang K, et al. miR⁃137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma[J]. Cell Death Differ, 2018,25(8):1457⁃1472. doi: 10.1038/s41418⁃017⁃0053⁃8. |
[11] | Liao Y, Jia X, Ren Y, et al. Suppressive role of microRNA⁃130b⁃3p in ferroptosis in melanoma cells correlates with DKK1 inhibition and Nrf2⁃HO⁃1 pathway activation[J]. Hum Cell, 2021,34(5):1532⁃1544. doi: 10.1007/s13577⁃021⁃00557⁃5. |
[12] | Hu FX, Liang JQ, Abudoureyimu D, et al. Bullous pemphigoid with nail damage associated with kaposi sarcoma: a case report[J]. Int J Dermatol Venereol, 2023,6(4):233⁃235. doi: 10.1097/JD9.0000000000000069. |
[13] | van der Meulen E, Anderton M, Blumenthal MJ, et al. Cellular receptors involved in KSHV infection[J]. Viruses, 2021,13(1):118. doi: 10.3390/v13010118. |
[14] | Li T, Gao SJ. KSHV hijacks FoxO1 to promote cell proliferation and cellular transformation by antagonizing oxidative stress[J]. J Med Virol, 2023,95(3):e28676. doi: 10.1002/jmv.28676. |
[15] | Stockwell BR. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications[J]. Cell, 2022,185(14):2401⁃2421. doi: 10.1016/j.cell.2022.06.003. |
[16] | Bender Ignacio RA, Lee JY, Rudek MA, et al. Brief report: a phase 1b/pharmacokinetic trial of PTC299, a novel PostTranscriptional VEGF inhibitor, for AIDS⁃related Kaposi's sarcoma: AIDS malignancy consortium trial 059[J]. J Acquir Immune Defic Syndr, 2016,72(1):52⁃57. doi: 10.1097/QAI.000 0000000000918. |
[17] | Yusifli Z, Ismayilov R, Kosemehmetoglu K, et al. A single⁃center retrospective analysis of Kaposi's sarcoma: is there a relationship between emmprin/CD147 expression and biological behavior?[J]. Int J Surg Pathol, 2024:10668969241226711. doi: 10.1177/10668969241226711. |
[18] | Ren HL, Wen GM, Zhao ZY, et al. Can CD147 work as a therapeutic target for tumors through COVID⁃19 infection?[J]. Int J Med Sci, 2022,19(14):2087⁃2092. doi: 10.7150/ijms.79162. |
[19] | Zhou J, Wang T, Zhang H, et al. KSHV vIL⁃6 promotes SIRT3⁃induced deacetylation of SERBP1 to inhibit ferroptosis and enhance cellular transformation by inducing lipoyltransferase 2 mRNA degradation[J/OL]. PLoS Pathog, 2024,20(3):e1012082. doi: 10.1371/journal.ppat.1012082. |
[20] | Li M, Jin S, Zhang Z, et al. Interleukin⁃6 facilitates tumor progression by inducing ferroptosis resistance in head and neck squamous cell carcinoma[J]. Cancer Lett, 2022,527:28⁃40. doi: 10.1016/j.canlet.2021.12.011. |
[21] | Wang T, Gong M, Cao Y, et al. Persistent ferroptosis promotes cervical squamous intraepithelial lesion development and oncogenesis by regulating KRAS expression in patients with high risk⁃HPV infection[J]. Cell Death Discov, 2022,8(1):201. doi: 10.1038/s41420⁃022⁃01013⁃5. |
[22] | Xie X, Tian L, Zhao Y, et al. BACH1⁃induced ferroptosis drives lymphatic metastasis by repressing the biosynthesis of monounsaturated fatty acids[J]. Cell Death Dis, 2023,14(1):48. doi: 10.1038/s41419⁃023⁃05571⁃z. |
[23] | Lee JH, Lee JD, Paulson K, et al. Enhancing immunogenic responses through CDK4/6 and HIF2α inhibition in Merkel cell carcinoma[J]. Heliyon, 2024,10(1):e23521. doi: 10.1016/j.heliyon.2023.e23521. |
[24] | Sarma B, Willmes C, Angerer L, et al. Artesunate affects T antigen expression and survival of virus⁃positive Merkel cell carcinoma[J]. Cancers (Basel), 2020,12(4):919. doi: 10.3390/cancers12040919. |
[25] | Kagami T, Yamade M, Suzuki T, et al. High expression level of CD44v8⁃10 in cancer stem⁃like cells is associated with poor prognosis in esophageal squamous cell carcinoma patients treated with chemoradiotherapy[J]. Oncotarget, 2018,9(79):34876⁃34888. doi: 10.18632/oncotarget.26172. |
[26] | Zhang X, Zhang M, Zhang Z, et al. Salidroside induces mitochondrial dysfunction and ferroptosis to inhibit melanoma progression through reactive oxygen species production[J]. Exp Cell Res, 2024,438(1):114034. doi: 10.1016/j.yexcr.2024.11 4034. |
[27] | Cheff DM, Huang C, Scholzen KC, et al. The ferroptosis inducing compounds RSL3 and ML162 are not direct inhibitors of GPX4 but of TXNRD1[J]. Redox Biol, 2023,62:102703. doi: 10.1016/j.redox.2023.102703. |
[28] | Tsoi J, Robert L, Paraiso K, et al. Multi⁃stage differentiation defines melanoma subtypes with differential vulnerability to drug⁃induced iron⁃dependent oxidative stress[J]. Cancer Cell, 2018,33(5):890⁃904. doi: 10.1016/j.ccell.2018.03.017. |
[29] | Ye J, Jiang X, Dong Z, et al. Low⁃concentration PTX and RSL3 inhibits tumor cell growth synergistically by inducing ferroptosis in mutant p53 hypopharyngeal squamous carcinoma[J]. Cancer Manag Res, 2019,11:9783⁃9792. doi: 10.2147/CMAR.S217944. |
[30] | Dorasamy MS, Ab A, Nellore K, et al. Synergistic inhibition of melanoma xenografts by Brequinar sodium and Doxorubicin[J]. Biomed Pharmacother, 2019,110:29⁃36. doi: 10.1016/j.biopha. 2018.11.010. |
[31] | Mishima E, Nakamura T, Zheng J, et al. DHODH inhibitors sensitize to ferroptosis by FSP1 inhibition[J]. Nature, 2023,619(7968):E9⁃E18. doi: 10.1038/s41586⁃023⁃06269⁃0. |
[32] | Erdem İS. Impact of ferroptosis inducers on chronic radiation⁃exposed survivor glioblastoma cells[J]. Anticancer Agents Med Chem, 2023,23(19):2154⁃2160. doi: 10.2174/18715206236662 30825110346. |
[33] | Hendricks JM, Doubravsky CE, Wehri E, et al. Identification of structurally diverse FSP1 inhibitors that sensitize cancer cells to ferroptosis[J]. Cell Chem Biol, 2023,30(9):1090⁃1103.e7. doi: 10.1016/j.chembiol.2023.04.007. |
[34] | Zhang D, Zhang M, Pang Y, et al. Folic acid⁃modified long⁃circulating liposomes loaded with sulfasalazine for targeted induction of ferroptosis in melanoma[J]. ACS Biomater Sci Eng, 2024,10(1):588⁃598. doi: 10.1021/acsbiomaterials.3c01223. |
[35] | Liu N, Zhang J, Yin M, et al. Inhibition of xCT suppresses the efficacy of anti⁃PD⁃1/L1 melanoma treatment through exosomal PD⁃L1⁃induced macrophage M2 polarization[J]. Mol Ther, 2021,29(7):2321⁃2334. doi: 10.1016/j.ymthe.2021.03.013. |
[36] | Wang G, Xie L, Li B, et al. A nanounit strategy reverses immune suppression of exosomal PD⁃L1 and is associated with enhanced ferroptosis[J]. Nat Commun, 2021,12(1):5733. doi: 10.1038/s41467⁃021⁃25990⁃w. |
[37] | Wang Q, He J, Qi Y, et al. Ultrasound⁃enhanced nano catalyst with ferroptosis⁃apoptosis combined anticancer strategy for metastatic uveal melanoma[J]. Biomaterials, 2024,305:122458. doi: 10.1016/j.biomaterials.2023.122458. |
[38] | Zhao S, Li Y, Cheng B. A tumor microenvironment⁃responsive microneedle patch for chemodynamic therapy of oral squamous cell carcinoma[J]. Nanoscale Adv, 2023,5(22):6162⁃6169. doi: 10.1039/d3na00527e. |
[1] | Zhang Congcong, Chen Hao. Ferroptosis in melanoma [J]. Chinese Journal of Dermatology, 2025, 58(5): 481-484. |
[2] | Combination of Traditional and Western Medicine Dermatology, Chinese Society of Dermatology, China Dermatologist Association. Expert consensus on reflectance confocal microscopic features of common non-melanocytic skin tumors (2025 edition) [J]. Chinese Journal of Dermatology, 2025, 58(1): 20-33. |
[3] | Hao Feng, Liu Guoyan. Application of optical coherence tomography in dermatology [J]. Chinese Journal of Dermatology, 2024, 57(9): 853-857. |
[4] | Combination of Traditional and Western Medicine Dermatology, Chinese Society of Dermatology, China Dermatologist Association. Expert consensus on the application of reflectance confocal microscopy in common melanocytic skin tumors(2024) [J]. Chinese Journal of Dermatology, 2024, 57(9): 775-784. |
[5] | Zhang Jiaqi, Wu Fan, Han Yuqing, Liu Qi, Pan Yao. Application of multi-photon microscopy in dermatology [J]. Chinese Journal of Dermatology, 2024, 57(9): 857-862. |
[6] | Yang Aimin, Cheng Jiangwei, Huang Jiacheng, Cen Ying, Chen Junjie. Treatment of Merkel cell carcinoma [J]. Chinese Journal of Dermatology, 2024, 57(7): 665-667. |
[7] | Sui Changlin, Chang Xiao, Zhao Qi, Zhu Wei. Psoriasis induced by anti-tumor targeted therapy and immunotherapy [J]. Chinese Journal of Dermatology, 2024, 57(6): 570-574. |
[8] | Wang Yimeng, Wu Wenting, Zhang Qian, Zhang Chunlei, Li Weiwei. Clinical and pathological diagnoses of 389 patients with primary solid tumors localized in the perianal and external genitalia regions [J]. Chinese Journal of Dermatology, 2024, 57(4): 316-323. |
[9] | Hong Yongzhen, Wang Qian, Liang Junqin, . Application of next-generation sequencing in the field of non-hereditary dermatoses [J]. Chinese Journal of Dermatology, 2024, 0(3): 20220436-e20220436. |
[10] | Yao Manxue, Zhou Naihui. Stevens-Johnson syndrome/toxic epidermal necrolysis associated with programmed death-1/programmed death-ligand 1 inhibitors [J]. Chinese Journal of Dermatology, 2024, 0(3): 20220644-e20220644. |
[11] | Liu Yingying, Deng Danqi. Correlations between skin microbiome and skin tumors [J]. Chinese Journal of Dermatology, 2024, 0(3): 20230241-e20230241. |
[12] | Liu Lyuye, Zhang Junling. Ferroptosis in common skin diseases [J]. Chinese Journal of Dermatology, 2024, 0(3): 20220783-e20220783. |
[13] | Yue Chao, Duan Mengying, Wang Tao, Zhang Manyu, Dai Yeqin, Peng Jianzhong, Song Xiuzu. Application of the upper eyelid orbicularis oculi myocutaneous island flap in repairing secondary defects after resection of eyelid and periorbital skin tumors: a retrospective analysis of 28 cases [J]. Chinese Journal of Dermatology, 2023, 56(9): 862-865. |
[14] | Lian Panpan, Liu Jun, Su Zhonglan, Wang Hongwei. Effect of peroxisome proliferator-activated receptor γ on skin physiological and pathological processes [J]. Chinese Journal of Dermatology, 2023, 56(4): 365-368. |
[15] | Hu Ying, Jiao Qingqing. Memory T cells in chronic autoimmune skin diseases [J]. Chinese Journal of Dermatology, 2023, 0(2): 20230193-e20230193. |
|