Chinese Journal of Dermatology ›› 2024, e20220783.doi: 10.35541/cjd.20220783
• Reviews • Previous Articles Next Articles
Liu Lyuye1, Zhang Junling2
Received:2022-11-07
Revised:2024-04-23
Online:2024-01-29
Published:2024-08-22
Contact:
Zhang Junling
E-mail:13920301679@126.com
Liu Lyuye, Zhang Junling. Ferroptosis in common skin diseases[J]. Chinese Journal of Dermatology,2024,e20220783. doi:10.35541/cjd.20220783
| [1] | Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron⁃dependent form of nonapoptotic cell death[J]. Cell, 2012,149(5):1060⁃1072. doi: 10.1016/j.cell.2012.03.042. |
| [2] | 陈丽华, 向阳. 铁死亡在肿瘤免疫治疗的研究进展[J]. 肿瘤预防与治疗, 2022,35(8):765⁃769. doi: 10.3969/j.issn.1674⁃0904.2022.08.014. |
| [3] | Chen X, Comish PB, Tang D, et al. Characteristics and biomarkers of ferroptosis[J]. Front Cell Dev Biol, 2021,9:637162. doi: 10.3389/fcell.2021.637162. |
| [4] | Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021,22(4):266⁃282. doi: 10.1038/s41580⁃020⁃00324⁃8. |
| [5] | Nagasaki T, Schuyler AJ, Zhao J, et al. 15LO1 dictates glutathione redox changes in asthmatic airway epithelium to worsen type 2 inflammation[J]. J Clin Invest, 2022,132(1):e151685. doi: 10.1172/JCI151685. |
| [6] | Lei G, Zhuang L, Gan B. Targeting ferroptosis as a vulnerability in cancer[J]. Nat Rev Cancer, 2022,22(7):381⁃396. doi: 10. 1038/s41568⁃022⁃00459⁃0. |
| [7] | Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future[J]. Cell Death Dis, 2020,11(2):88. doi: 10.1038/s41419⁃020⁃2298⁃2. |
| [8] | Lei G, Zhang Y, Hong T, et al. Ferroptosis as a mechanism to mediate p53 function in tumor radiosensitivity[J]. Oncogene, 2021,40(20):3533⁃3547. doi: 10.1038/s41388⁃021⁃01790⁃w. |
| [9] | Chu B, Kon N, Chen D, et al. ALOX12 is required for p53⁃mediated tumour suppression through a distinct ferroptosis pathway[J]. Nat Cell Biol, 2019,21(5):579⁃591. doi: 10.1038/s41556⁃019⁃0305⁃6. |
| [10] | Ji H, Wang W, Li X, et al. p53: a double⁃edged sword in tumor ferroptosis[J]. Pharmacol Res, 2022,177:106013. doi: 10.1016/j.phrs.2021.106013. |
| [11] | Wang Y, Zhao Y, Ye T, et al. Ferroptosis signaling and regulators in atherosclerosis[J]. Front Cell Dev Biol, 2021,9:809457. doi: 10.3389/fcell.2021.809457. |
| [12] | Dodson M, Castro⁃Portuguez R, Zhang DD. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis[J]. Redox Biol, 2019,23:101107. doi: 10.1016/j.redox.2019.101107. |
| [13] | Zhao Y, Lu J, Mao A, et al. Autophagy inhibition plays a protective role in ferroptosis induced by Alcohol via the p62⁃Keap1⁃Nrf2 pathway[J]. J Agric Food Chem, 2021,69(33):9671⁃9683. doi: 10.1021/acs.jafc.1c03751. |
| [14] | Chen J, Li X, Ge C, et al. The multifaceted role of ferroptosis in liver disease[J]. Cell Death Differ, 2022,29(3):467⁃480. doi: 10.1038/s41418⁃022⁃00941⁃0. |
| [15] | Doll S, Freitas FP, Shah R, et al. FSP1 is a glutathione⁃independent ferroptosis suppressor[J]. Nature, 2019,575(7784):693⁃698. doi: 10.1038/s41586⁃019⁃1707⁃0. |
| [16] | Bersuker K, Hendricks JM, Li Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature, 2019,575(7784):688⁃692. doi: 10.1038/s41586⁃019⁃1705⁃2. |
| [17] | Wang W, Green M, Choi JE, et al. CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy[J]. Nature, 2019,569(7755):270⁃274. doi: 10.1038/s41586⁃019⁃1170⁃y. |
| [18] | Wu J, Minikes AM, Gao M, et al. Intercellular interaction dictates cancer cell ferroptosis via NF2⁃YAP signalling[J]. Nature, 2019,572(7769):402⁃406. doi: 10.1038/s41586⁃019⁃1426⁃6. |
| [19] | Lee H, Zandkarimi F, Zhang Y, et al. Energy⁃stress⁃mediated AMPK activation inhibits ferroptosis[J]. Nat Cell Biol, 2020,22(2):225⁃234. doi: 10.1038/s41556⁃020⁃0461⁃8. |
| [20] | 李春英, 李舒丽. 白癜风发病机制研究热点解析[J]. 中华皮肤科杂志, 2019,52(9):593⁃597. doi: 10.3760/cma.j.issn.0412⁃4030.2019.09.001. |
| [21] | Xuan Y, Yang Y, Xiang L, et al. The role of oxidative stress in the pathogenesis of vitiligo: a culprit for melanocyte death[J]. Oxid Med Cell Longev, 2022,2022:8498472. doi: 10.1155/2022/8498472. |
| [22] | Villalpando⁃Rodriguez GE, Blankstein AR, Konzelman C, et al. Lysosomal destabilizing drug siramesine and the dual tyrosine kinase inhibitor lapatinib induce a synergistic ferroptosis through reduced heme oxygenase⁃1 (HO⁃1) levels[J]. Oxid Med Cell Longev, 2019,2019:9561281. doi: 10.1155/2019/9561281. |
| [23] | Pelle E, Huang X, Zhang Q, et al. Increased endogenous DNA oxidation correlates to increased iron levels in melanocytes relative to keratinocytes[J]. J Cosmet Sci, 2014,65(5):277⁃284. |
| [24] | Wu X, Jin S, Yang Y, et al. Altered expression of ferroptosis markers and iron metabolism reveals a potential role of ferroptosis in vitiligo[J]. Pigment Cell Melanoma Res, 2022,35(3):328⁃341. doi: 10.1111/pcmr.13032. |
| [25] | Orlik C, Deibel D, Küblbeck J, et al. Keratinocytes costimulate naive human T cells via CD2: a potential target to prevent the development of proinflammatory Th1 cells in the skin[J]. Cell Mol Immunol, 2020,17(4):380⁃394. doi: 10.1038/s41423⁃019⁃0261⁃x. |
| [26] | Shou Y, Yang L, Yang Y, et al. Inhibition of keratinocyte ferroptosis suppresses psoriatic inflammation[J]. Cell Death Dis, 2021,12(11):1009. doi: 10.1038/s41419⁃021⁃04284⁃5. |
| [27] | Rashmi R, Yuti AM, Basavaraj KH. Enhanced ferritin/iron ratio in psoriasis[J]. Indian J Med Res, 2012,135(5):662⁃665. |
| [28] | Shahidi⁃Dadras M, Namazi N, Younespour S. Comparative analysis of serum copper, iron, ceruloplasmin, and transferrin levels in mild and severe psoriasis vulgaris in iranian patients[J]. Indian Dermatol Online J, 2017,8(4):250⁃253. doi: 10. 4103/idoj.IDOJ_230_16. |
| [29] | Ahmed B, Qadir MI, Ghafoor S. Malignant melanoma: skin cancer⁃diagnosis, prevention, and treatment[J]. Crit Rev Eukaryot Gene Expr, 2020,30(4):291⁃297. doi: 10.1615/Crit RevEukaryotGeneExpr.2020028454. |
| [30] | Wang Z, Jin D, Ma D, et al. Ferroptosis suppressed the growth of melanoma that may be related to DNA damage[J]. Dermatol Ther, 2019,32(4):e12921. doi: 10.1111/dth.12921. |
| [31] | Hartman ML. Non⁃apoptotic cell death signaling pathways in melanoma[J]. Int J Mol Sci, 2020,21(8):2980. doi: 10.3390/ijms21082980. |
| [32] | Tsoi J, Robert L, Paraiso K, et al. Multi⁃stage differentiation defines melanoma subtypes with differential vulnerability to drug⁃induced iron⁃dependent oxidative stress[J]. Cancer Cell, 2018,33(5):890⁃904. doi: 10.1016/j.ccell.2018.03.017. |
| [33] | Viswanathan VS, Ryan MJ, Dhruv HD, et al. Dependency of a therapy⁃resistant state of cancer cells on a lipid peroxidase pathway[J]. Nature, 2017,547(7664):453⁃457. doi: 10.1038/nature23007. |
| [34] | Hangauer MJ, Viswanathan VS, Ryan MJ, et al. Drug⁃tolerant persister cancer cells are vulnerable to GPX4 inhibition[J]. Nature, 2017,551(7679):247⁃250. doi: 10.1038/nature24297. |
| [35] | Luo M, Wu L, Zhang K, et al. miR⁃137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma[J]. Cell Death Differ, 2018,25(8):1457⁃1472. doi: 10.1038/s41418⁃017⁃0053⁃8. |
| [36] | Zhang K, Wu L, Zhang P, et al. miR⁃9 regulates ferroptosis by targeting glutamic⁃oxaloacetic transaminase GOT1 in melanoma[J]. Mol Carcinog, 2018,57(11):1566⁃1576. doi: 10.1002/mc. 22878. |
| [37] | Ubellacker JM, Tasdogan A, Ramesh V, et al. Lymph protects metastasizing melanoma cells from ferroptosis[J]. Nature, 2020,585(7823):113⁃118. doi: 10.1038/s41586⁃020⁃2623⁃z. |
| [38] | Chen Q, Wang J, Xiang M, et al. The potential role of ferroptosis in systemic lupus erythematosus[J]. Front Immunol, 2022,13:855622. doi: 10.3389/fimmu.2022.855622. |
| [39] | Li P, Jiang M, Li K, et al. Glutathione peroxidase 4⁃regulated neutrophil ferroptosis induces systemic autoimmunity[J]. Nat Immunol, 2021,22(9):1107⁃1117. doi: 10.1038/s41590⁃021⁃00993⁃3. |
| [40] | Wen Q, Liu J, Kang R, et al. The release and activity of HMGB1 in ferroptosis[J]. Biochem Biophys Res Commun, 2019,510(2):278⁃283. doi: 10.1016/j.bbrc.2019.01.090. |
| [41] | Vats K, Kruglov O, Mizes A, et al. Keratinocyte death by ferroptosis initiates skin inflammation after UVB exposure[J]. Redox Biol, 2021,47:102143. doi: 10.1016/j.redox.2021.102143. |
| [42] | Liu T, Son M, Diamond B. HMGB1 in systemic lupus erythematosus[J]. Front Immunol, 2020,11:1057. doi: 10.3389/fimmu.2020.01057. |
| [43] | Ni S, Yuan Y, Kuang Y, et al. Iron metabolism and immune regulation[J]. Front Immunol, 2022,13:816282. doi: 10.3389/fimmu.2022.816282. |
| [1] | Jiang Jiayi, Wang Daguang. Prevention and management of thrombus during the perioperative period in dermatologic surgery [J]. Chinese Journal of Dermatology, 2026, 59(1): 85-88. |
| [2] | Wang Su, Wu Jintong, Li Wenyu, Zhang Cheng, Li Chengxin, Wang Rui. Efficacy and safety of cold atmospheric plasma in the treatment of non-open Staphylococcus aureus skin infections in mice [J]. Chinese Journal of Dermatology, 2026, 59(1): 44-50. |
| [3] | Ai Fangting¹, Yao Chunxia¹, Miao Guoying², Sun Zijun¹, Zhang Li. Calcium-sensing receptor-mediated ferroptosis in keratinocytes induced by ultraviolet B irradiation: a mechanistic study [J]. Chinese Journal of Dermatology, 2026, 59(1): 36-43. |
| [4] | Chen Yanyan, Zhang Hanlin, Liu Liping, Li Yumei. Correlations between circadian rhythm and melanoma [J]. Chinese Journal of Dermatology, 2026, 59(1): 82-85. |
| [5] | Xue Tianping, Lu Zhenzhong, Wang Hongsheng. Relationship between the pathogenesis of psoriasis and microbial flora [J]. Chinese Journal of Dermatology, 2026, 59(1): 89-92. |
| [6] | Liu Houguang, Shen Yi, Wei Qiongling, Li Zheng, Huo Shanshan, Xie Guangcheng, Liu Yingwen. Effect of overexpression or inhibition of cyclin-dependent kinase 2 on the metabolome of A375 cells [J]. Chinese Journal of Dermatology, 2026, 59(1): 51-58. |
| [7] | Wang Xia, Xiang Jiyuan, Zeng Hengxi, Chen Xi, Liu Fuqian, Yang Bin. Mechanistic investigation into the inhibitory effect of CDK5 on melanin synthesis in melanocytes via a CDC42-MITF signaling pathway [J]. Chinese Journal of Dermatology, 2026, 59(1): 21-27. |
| [8] | Dai Yeqin, Song Xiuzu. Application of hair follicle transplantation and follicular cell suspension transplantation in the treatment of vitiligo [J]. Chinese Journal of Dermatology, 2025, 58(9): 882-885. |
| [9] | Song Pu, Liu Yu, Guo Sen, Li Shuli, Liu Ling, Li Chunying. Mast cell-derived chemokine C-C motif ligand 5 affects the migration of CD8+ T cells from vitiligo patients under oxidative stress [J]. Chinese Journal of Dermatology, 2025, 58(9): 839-843. |
| [10] | Zhou Miaoni, Sheng Anqi, Fu Lifang, Jin Rong, Xu Wen, Wei Xiaodong, Xu Ai′e . Efficacy and safety of an antioxidant gel containing tea polyphenols combined with narrow-band ultraviolet B in the treatment of vitiligo: a single-center randomized controlled trial [J]. Chinese Journal of Dermatology, 2025, 58(9): 834-838. |
| [11] | Zhang Yude, Wang Hongjuan, Kang Xiaojing. Stem cell therapy for vitiligo: advances in basic and clinical research [J]. Chinese Journal of Dermatology, 2025, 58(9): 878-881. |
| [12] | Xu Xuqing, Hu Wen, Kang Xiaojing. Cell ferroptosis in the pathogenesis of vitiligo and advances in related therapeutic agents [J]. Chinese Journal of Dermatology, 2025, 58(9): 886-889. |
| [13] | Zhu Tingting, Li Weiran, Pan Zhaobing, Liu Hao, Tang Xianfa, Zhu Caihong, Huang Hequn, Duan Dawei, Zhang Ruochen, Chen Xiaojian, Wang Yang, Xue Qian, Zhang Jurui, Yang Lijing, Zhang Xuejun, Huang He, Zhang Bo, . Efficacy of baricitinib combined with ruxolitinib cream in the treatment of six patients with progressive nonsegmental vitiligo: a clinical observation [J]. Chinese Journal of Dermatology, 2025, 58(9): 856-859. |
| [14] | Guliziba·Tuersun, Zhao Yanan, Wang Hongjuan, Kang Xiaojing, Qu Yuanyuan. Efficacy of autologous melanocyte transplantation combined with 308-nm light-emitting diode phototherapy at escalating doses in the treatment of refractory stable vitiligo: a clinical observation [J]. Chinese Journal of Dermatology, 2025, 58(9): 852-856. |
| [15] | Hong Yongzhen, Wang Qian, Liang Junqin, . Application of next-generation sequencing in the field of non-hereditary dermatoses [J]. Chinese Journal of Dermatology, 2025, 58(8): 793-796. |
|