[1] |
黄文华, 郑振龙, 金哲虎. 转化生长因子β/Smad信号通路及相关影响因子在瘢痕疙瘩中的研究进展[J]. 中华皮肤科杂志, 2023,56:E160⁃E164. doi: 10.35541/cjd.20220556.
|
[2] |
Huang J, Heng S, Zhang W, et al. Dermal extracellular matrix molecules in skin development, homeostasis, wound regeneration and diseases[J]. Semin Cell Dev Biol, 2022,128:137⁃144. doi: 10.1016/j.semcdb.2022.02.027.
|
[3] |
Takeshita S, Kikuno R, Tezuka K, et al. Osteoblast⁃specific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I[J]. Biochem J, 1993,294 (Pt 1):271⁃278. doi: 10.1042/bj2940271.
|
[4] |
Horiuchi K, Amizuka N, Takeshita S, et al. Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta[J]. J Bone Miner Res, 1999,14(7):1239⁃1249. doi: 10.1359/jbmr.1999.14.7.1239.
|
[5] |
Wang Z, An J, Zhu D, et al. Periostin: an emerging activator of multiple signaling pathways[J]. J Cell Commun Signal, 2022,16(4):515⁃530. doi: 10.1007/s12079⁃022⁃00674⁃2.
|
[6] |
Wong GS, Rustgi AK. Matricellular proteins: priming the tumour microenvironment for cancer development and metastasis[J]. Br J Cancer, 2013,108(4):755⁃761. doi: 10.1038/bjc.2012.592.
|
[7] |
Kormann R, Kavvadas P, Placier S, et al. Periostin promotes cell proliferation and macrophage polarization to drive repair after AKI[J]. J Am Soc Nephrol, 2020,31(1):85⁃100. doi: 10.1681/ASN.2019020113.
|
[8] |
Maeda D, Kubo T, Kiya K, et al. Periostin is induced by IL⁃4/IL⁃13 in dermal fibroblasts and promotes RhoA/ROCK pathway⁃mediated TGF⁃β1 secretion in abnormal scar formation[J]. J Plast Surg Hand Surg, 2019,53(5):288⁃294. doi: 10.1080/2000656X.2019.1612752.
|
[9] |
张雪, 宁淑华, 兰东, 等. 过度增生性瘢痕骨膜蛋白与转化生长因子⁃β1的表达[J]. 中华实验外科杂志, 2023,40(2):334⁃337. doi: 10.3760/cma.j.cn421213⁃20220715⁃00537.
|
[10] |
Xu H, Wang Z, Yang H, et al. Bioinformatics analysis and identification of dysregulated POSTN in the pathogenesis of keloid[J]. Int Wound J, 2023,20(5):1700⁃1711. doi: 10.1111/iwj.14031.
|
[11] |
Wang Q, Yang X, Ma J, et al. PI3K/AKT pathway promotes keloid fibroblasts proliferation by enhancing glycolysis under hypoxia[J]. Wound Repair Regen, 2023,31(2):139⁃155. doi: 10.1111/wrr.13067.
|
[12] |
Liang C, Jiang Y, Sun L. Vitexin suppresses the proliferation, angiogenesis and stemness of endometrial cancer through the PI3K/AKT pathway[J]. Pharm Biol, 2023,61(1):581⁃589. doi: 10.1080/13880209.2023.2190774.
|
[13] |
Hu X, Xu Q, Wan H, et al. PI3K⁃Akt⁃mTOR/PFKFB3 pathway mediated lung fibroblast aerobic glycolysis and collagen synthesis in lipopolysaccharide⁃induced pulmonary fibrosis[J]. Lab Invest, 2020,100(6):801⁃811. doi: 10.1038/s41374⁃020⁃0404⁃9.
|
[14] |
Xiu Y, Su Y, Gao L, et al. Corylin accelerated wound healing through SIRT1 and PI3K/AKT signaling: a candidate remedy for chronic non⁃healing wounds[J]. Front Pharmacol, 2023,14:1153810. doi: 10.3389/fphar.2023.1153810.
|
[15] |
Bu W, Fang F, Zhang M, et al. Long non⁃coding RNA uc003jox.1 promotes keloid fibroblast proliferation and invasion through activating the PI3K/AKT signaling pathway[J]. J Craniofac Surg, 2023,34(2):556⁃560. doi: 10.1097/SCS.0000000000009122.
|
[16] |
Lv W, Wu M, Ren Y, et al. Treatment of keloids through Runx2 siRNA‑induced inhibition of the PI3K/AKT signaling pathway[J]. Mol Med Rep, 2021,23(1):55 [pii]. doi: 10.3892/mmr. 2020.11693.
|
[17] |
Zhang Z, Nie F, Kang C, et al. Increased periostin expression affects the proliferation, collagen synthesis, migration and invasion of keloid fibroblasts under hypoxic conditions[J]. Int J Mol Med, 2014,34(1):253⁃261. doi: 10.3892/ijmm.2014.1760.
|
[18] |
Crawford J, Nygard K, Gan BS, et al. Periostin induces fibroblast proliferation and myofibroblast persistence in hypertrophic scarring[J]. Exp Dermatol, 2015,24(2):120⁃126. doi: 10.1111/exd.12601.
|
[19] |
Zhang Z, Nie F, Chen X, et al. Upregulated periostin promotes angiogenesis in keloids through activation of the ERK 1/2 and focal adhesion kinase pathways, as well as the upregulated expression of VEGF and angiopoietin‑1[J]. Mol Med Rep, 2015,11(2):857⁃864. doi: 10.3892/mmr.2014.2827.
|
[20] |
Wei P, Han Y, Chen H, et al. Ang⁃1 inhibited endoplasmic reticulum stress and apoptosis of VECs in rats with aSAH⁃induced CVS through the regulated PI3K/Akt pathway[J]. Curr Neurovasc Res, 2023,20(1):140⁃148. doi: 10.2174/1567202619 666220412082145.
|
[21] |
Tseng TH, Chen CL, Chang CH, et al. IL⁃6 induces periostin production in human ACL remnants: a possible mechanism causing post⁃traumatic osteoarthritis[J]. J Orthop Surg Res, 2023,18(1):824. doi: 10.1186/s13018⁃023⁃04308⁃0.
|
[22] |
Shin SM, Baek EJ, Kim KH, et al. Polydeoxyribonucleotide exerts opposing effects on ERK activity in human skin keratinocytes and fibroblasts[J]. Mol Med Rep, 2023,28(2):148 [pii]. doi: 10.3892/mmr.2023.13035.
|
[23] |
Davis AM, Rapley A, Dawson CW, et al. The EBV⁃encoded oncoprotein, LMP1, recruits and transforms fibroblasts via an ERK⁃MAPK⁃dependent mechanism[J]. Pathogens, 2021,10(8):982. doi: 10.3390/pathogens10080982.
|
[24] |
Yang W, Pan L, Cheng Y, et al. Nintedanib alleviates pulmonary fibrosis in vitro and in vivo by inhibiting the FAK/ERK/S100A4 signalling pathway[J]. Int Immunopharmacol, 2022,113(Pt A):109409. doi: 10.1016/j.intimp.2022.109409.
|
[25] |
Kim J, Kim B, Kim SM, et al. Hypoxia⁃induced epithelial⁃to⁃mesenchymal transition mediates fibroblast abnormalities via ERK activation in cutaneous wound healing[J]. Int J Mol Sci, 2019,20(10):2546. doi: 10.3390/ijms20102546.
|
[26] |
Wasik A, Ratajczak⁃Wielgomas K, Badzinski A, et al. The role of periostin in angiogenesis and lymphangiogenesis in tumors[J]. Cancers (Basel), 2022,14(17):4225. doi: 10.3390/cancers141 74225.
|
[27] |
任章霞, 李凡, 杨惠嘉, 等. 骨母细胞特异性因子2介导间充质干细胞调控瘢痕疙瘩样瘤体生长的研究[J]. 局解手术学杂志, 2019,28(9):695⁃700. doi: 10.11659/jjssx.11E017018.
|
[28] |
苏治国, 范金财, 刘立强, 等. 瘢痕疙瘩发病机制研究进展[J]. 中华整形外科杂志, 2022,38(2):228⁃231. doi: 10.3760/cma.j.cn114453⁃20200217⁃00048.
|
[29] |
Lee YI, Shim JE, Kim J, et al. WNT5A drives interleukin⁃6⁃dependent epithelial⁃mesenchymal transition via the JAK/STAT pathway in keloid pathogenesis[J]. Burns Trauma, 2022,10:tkac023. doi: 10.1093/burnst/tkac023.
|
[30] |
Lin CX, Chen ZJ, Peng QL, et al. The m6A⁃methylated mRNA pattern and the activation of the Wnt signaling pathway under the hyper⁃m6A⁃modifying condition in the keloid[J]. Front Cell Dev Biol, 2022,10:947337. doi: 10.3389/fcell.2022.947337.
|
[31] |
王雪丽, 马昕, 李乐, 等. 骨母特异性因子2促进瘢痕疙瘩间充质干细胞体外增殖的研究[J]. 第三军医大学学报, 2017,39(3):236⁃242. doi: 10.16016/j.1000⁃5404.201609102.
|
[32] |
Nang'ole WF, Omu A, Ogeng'o JA, et al. Do mesenchymal stem cells influence keloid recurrence?[J]. Stem Cells Cloning, 2022,15:77⁃84. doi: 10.2147/SCCAA.S373551.
|
[33] |
Tu J, Wu F, Chen L, et al. Long non⁃coding RNA PCAT6 induces M2 polarization of macrophages in cholangiocarcinoma via modulating miR⁃326 and RhoA⁃ROCK signaling pathway[J]. Front Oncol, 2020,10:605877. doi: 10.3389/fonc.2020.605877.
|
[34] |
Bond JE, Kokosis G, Ren L, et al. Wound contraction is attenuated by fasudil inhibition of Rho⁃associated kinase[J]. Plast Reconstr Surg, 2011,128(5):438e⁃450e. doi: 10.1097/PRS.0b013e31822b7352.
|
[35] |
Nikoloudaki G, Snider P, Simmons O, et al. Periostin and matrix stiffness combine to regulate myofibroblast differentiation and fibronectin synthesis during palatal healing[J]. Matrix Biol, 2020,94:31⁃56. doi: 10.1016/j.matbio.2020.07.002.
|
[36] |
Cui J, Li Z, Jin C, et al. Knockdown of fibronectin extra domain B suppresses TGF⁃β1⁃mediated cell proliferation and collagen deposition in keloid fibroblasts via AKT/ERK signaling pathway[J]. Biochem Biophys Res Commun, 2020,526(4):1131⁃1137. doi: 10.1016/j.bbrc.2020.04.021.
|
[37] |
Huang S, Deng W, Dong Y, et al. Melatonin influences the biological characteristics of keloid fibroblasts through the Erk and Smad signalling pathways[J]. Burns Trauma, 2023,11:tkad005. doi: 10.1093/burnst/tkad005.
|