Chinese Journal of Dermatology ›› 2025, e20240063.doi: 10.35541/cjd.20240063
• Reviews • Previous Articles Next Articles
Zhao Lei, Zhou Ming, Quan Xuemei, Cui Aili
Received:
2024-01-31
Revised:
2025-01-03
Online:
2025-01-24
Published:
2025-02-17
Contact:
Cui Aili
E-mail:13843397695@163.com
Supported by:
Zhao Lei, Zhou Ming, Quan Xuemei, Cui Aili. Roles of periostin and its associated signaling pathways in keloids[J]. Chinese Journal of Dermatology,2025,e20240063. doi:10.35541/cjd.20240063
[1] | 黄文华, 郑振龙, 金哲虎. 转化生长因子β/Smad信号通路及相关影响因子在瘢痕疙瘩中的研究进展[J]. 中华皮肤科杂志, 2023,56:E160⁃E164. doi: 10.35541/cjd.20220556. |
[2] | Huang J, Heng S, Zhang W, et al. Dermal extracellular matrix molecules in skin development, homeostasis, wound regeneration and diseases[J]. Semin Cell Dev Biol, 2022,128:137⁃144. doi: 10.1016/j.semcdb.2022.02.027. |
[3] | Takeshita S, Kikuno R, Tezuka K, et al. Osteoblast⁃specific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I[J]. Biochem J, 1993,294 (Pt 1):271⁃278. doi: 10.1042/bj2940271. |
[4] | Horiuchi K, Amizuka N, Takeshita S, et al. Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta[J]. J Bone Miner Res, 1999,14(7):1239⁃1249. doi: 10.1359/jbmr.1999.14.7.1239. |
[5] | Wang Z, An J, Zhu D, et al. Periostin: an emerging activator of multiple signaling pathways[J]. J Cell Commun Signal, 2022,16(4):515⁃530. doi: 10.1007/s12079⁃022⁃00674⁃2. |
[6] | Wong GS, Rustgi AK. Matricellular proteins: priming the tumour microenvironment for cancer development and metastasis[J]. Br J Cancer, 2013,108(4):755⁃761. doi: 10.1038/bjc.2012.592. |
[7] | Kormann R, Kavvadas P, Placier S, et al. Periostin promotes cell proliferation and macrophage polarization to drive repair after AKI[J]. J Am Soc Nephrol, 2020,31(1):85⁃100. doi: 10.1681/ASN.2019020113. |
[8] | Maeda D, Kubo T, Kiya K, et al. Periostin is induced by IL⁃4/IL⁃13 in dermal fibroblasts and promotes RhoA/ROCK pathway⁃mediated TGF⁃β1 secretion in abnormal scar formation[J]. J Plast Surg Hand Surg, 2019,53(5):288⁃294. doi: 10.1080/2000656X.2019.1612752. |
[9] | 张雪, 宁淑华, 兰东, 等. 过度增生性瘢痕骨膜蛋白与转化生长因子⁃β1的表达[J]. 中华实验外科杂志, 2023,40(2):334⁃337. doi: 10.3760/cma.j.cn421213⁃20220715⁃00537. |
[10] | Xu H, Wang Z, Yang H, et al. Bioinformatics analysis and identification of dysregulated POSTN in the pathogenesis of keloid[J]. Int Wound J, 2023,20(5):1700⁃1711. doi: 10.1111/iwj.14031. |
[11] | Wang Q, Yang X, Ma J, et al. PI3K/AKT pathway promotes keloid fibroblasts proliferation by enhancing glycolysis under hypoxia[J]. Wound Repair Regen, 2023,31(2):139⁃155. doi: 10.1111/wrr.13067. |
[12] | Liang C, Jiang Y, Sun L. Vitexin suppresses the proliferation, angiogenesis and stemness of endometrial cancer through the PI3K/AKT pathway[J]. Pharm Biol, 2023,61(1):581⁃589. doi: 10.1080/13880209.2023.2190774. |
[13] | Hu X, Xu Q, Wan H, et al. PI3K⁃Akt⁃mTOR/PFKFB3 pathway mediated lung fibroblast aerobic glycolysis and collagen synthesis in lipopolysaccharide⁃induced pulmonary fibrosis[J]. Lab Invest, 2020,100(6):801⁃811. doi: 10.1038/s41374⁃020⁃0404⁃9. |
[14] | Xiu Y, Su Y, Gao L, et al. Corylin accelerated wound healing through SIRT1 and PI3K/AKT signaling: a candidate remedy for chronic non⁃healing wounds[J]. Front Pharmacol, 2023,14:1153810. doi: 10.3389/fphar.2023.1153810. |
[15] | Bu W, Fang F, Zhang M, et al. Long non⁃coding RNA uc003jox.1 promotes keloid fibroblast proliferation and invasion through activating the PI3K/AKT signaling pathway[J]. J Craniofac Surg, 2023,34(2):556⁃560. doi: 10.1097/SCS.0000000000009122. |
[16] | Lv W, Wu M, Ren Y, et al. Treatment of keloids through Runx2 siRNA‑induced inhibition of the PI3K/AKT signaling pathway[J]. Mol Med Rep, 2021,23(1):55 [pii]. doi: 10.3892/mmr. 2020.11693. |
[17] | Zhang Z, Nie F, Kang C, et al. Increased periostin expression affects the proliferation, collagen synthesis, migration and invasion of keloid fibroblasts under hypoxic conditions[J]. Int J Mol Med, 2014,34(1):253⁃261. doi: 10.3892/ijmm.2014.1760. |
[18] | Crawford J, Nygard K, Gan BS, et al. Periostin induces fibroblast proliferation and myofibroblast persistence in hypertrophic scarring[J]. Exp Dermatol, 2015,24(2):120⁃126. doi: 10.1111/exd.12601. |
[19] | Zhang Z, Nie F, Chen X, et al. Upregulated periostin promotes angiogenesis in keloids through activation of the ERK 1/2 and focal adhesion kinase pathways, as well as the upregulated expression of VEGF and angiopoietin‑1[J]. Mol Med Rep, 2015,11(2):857⁃864. doi: 10.3892/mmr.2014.2827. |
[20] | Wei P, Han Y, Chen H, et al. Ang⁃1 inhibited endoplasmic reticulum stress and apoptosis of VECs in rats with aSAH⁃induced CVS through the regulated PI3K/Akt pathway[J]. Curr Neurovasc Res, 2023,20(1):140⁃148. doi: 10.2174/1567202619 666220412082145. |
[21] | Tseng TH, Chen CL, Chang CH, et al. IL⁃6 induces periostin production in human ACL remnants: a possible mechanism causing post⁃traumatic osteoarthritis[J]. J Orthop Surg Res, 2023,18(1):824. doi: 10.1186/s13018⁃023⁃04308⁃0. |
[22] | Shin SM, Baek EJ, Kim KH, et al. Polydeoxyribonucleotide exerts opposing effects on ERK activity in human skin keratinocytes and fibroblasts[J]. Mol Med Rep, 2023,28(2):148 [pii]. doi: 10.3892/mmr.2023.13035. |
[23] | Davis AM, Rapley A, Dawson CW, et al. The EBV⁃encoded oncoprotein, LMP1, recruits and transforms fibroblasts via an ERK⁃MAPK⁃dependent mechanism[J]. Pathogens, 2021,10(8):982. doi: 10.3390/pathogens10080982. |
[24] | Yang W, Pan L, Cheng Y, et al. Nintedanib alleviates pulmonary fibrosis in vitro and in vivo by inhibiting the FAK/ERK/S100A4 signalling pathway[J]. Int Immunopharmacol, 2022,113(Pt A):109409. doi: 10.1016/j.intimp.2022.109409. |
[25] | Kim J, Kim B, Kim SM, et al. Hypoxia⁃induced epithelial⁃to⁃mesenchymal transition mediates fibroblast abnormalities via ERK activation in cutaneous wound healing[J]. Int J Mol Sci, 2019,20(10):2546. doi: 10.3390/ijms20102546. |
[26] | Wasik A, Ratajczak⁃Wielgomas K, Badzinski A, et al. The role of periostin in angiogenesis and lymphangiogenesis in tumors[J]. Cancers (Basel), 2022,14(17):4225. doi: 10.3390/cancers141 74225. |
[27] | 任章霞, 李凡, 杨惠嘉, 等. 骨母细胞特异性因子2介导间充质干细胞调控瘢痕疙瘩样瘤体生长的研究[J]. 局解手术学杂志, 2019,28(9):695⁃700. doi: 10.11659/jjssx.11E017018. |
[28] | 苏治国, 范金财, 刘立强, 等. 瘢痕疙瘩发病机制研究进展[J]. 中华整形外科杂志, 2022,38(2):228⁃231. doi: 10.3760/cma.j.cn114453⁃20200217⁃00048. |
[29] | Lee YI, Shim JE, Kim J, et al. WNT5A drives interleukin⁃6⁃dependent epithelial⁃mesenchymal transition via the JAK/STAT pathway in keloid pathogenesis[J]. Burns Trauma, 2022,10:tkac023. doi: 10.1093/burnst/tkac023. |
[30] | Lin CX, Chen ZJ, Peng QL, et al. The m6A⁃methylated mRNA pattern and the activation of the Wnt signaling pathway under the hyper⁃m6A⁃modifying condition in the keloid[J]. Front Cell Dev Biol, 2022,10:947337. doi: 10.3389/fcell.2022.947337. |
[31] | 王雪丽, 马昕, 李乐, 等. 骨母特异性因子2促进瘢痕疙瘩间充质干细胞体外增殖的研究[J]. 第三军医大学学报, 2017,39(3):236⁃242. doi: 10.16016/j.1000⁃5404.201609102. |
[32] | Nang'ole WF, Omu A, Ogeng'o JA, et al. Do mesenchymal stem cells influence keloid recurrence?[J]. Stem Cells Cloning, 2022,15:77⁃84. doi: 10.2147/SCCAA.S373551. |
[33] | Tu J, Wu F, Chen L, et al. Long non⁃coding RNA PCAT6 induces M2 polarization of macrophages in cholangiocarcinoma via modulating miR⁃326 and RhoA⁃ROCK signaling pathway[J]. Front Oncol, 2020,10:605877. doi: 10.3389/fonc.2020.605877. |
[34] | Bond JE, Kokosis G, Ren L, et al. Wound contraction is attenuated by fasudil inhibition of Rho⁃associated kinase[J]. Plast Reconstr Surg, 2011,128(5):438e⁃450e. doi: 10.1097/PRS.0b013e31822b7352. |
[35] | Nikoloudaki G, Snider P, Simmons O, et al. Periostin and matrix stiffness combine to regulate myofibroblast differentiation and fibronectin synthesis during palatal healing[J]. Matrix Biol, 2020,94:31⁃56. doi: 10.1016/j.matbio.2020.07.002. |
[36] | Cui J, Li Z, Jin C, et al. Knockdown of fibronectin extra domain B suppresses TGF⁃β1⁃mediated cell proliferation and collagen deposition in keloid fibroblasts via AKT/ERK signaling pathway[J]. Biochem Biophys Res Commun, 2020,526(4):1131⁃1137. doi: 10.1016/j.bbrc.2020.04.021. |
[37] | Huang S, Deng W, Dong Y, et al. Melatonin influences the biological characteristics of keloid fibroblasts through the Erk and Smad signalling pathways[J]. Burns Trauma, 2023,11:tkad005. doi: 10.1093/burnst/tkad005. |
[1] | Zhang Daoning, Lin Pingping, Tian Jie, Zhang Guohong, Li Hang. Transcriptomic characteristics of keloid-adjacent dermal fibroblasts: a preliminary study [J]. Chinese Journal of Dermatology, 2025, 58(2): 145-153. |
[2] | Zhang Rongju, Zhu Yueqian, Zhou Naihui, Qian Qihong. Imaging techniques in keloids [J]. Chinese Journal of Dermatology, 2024, 57(9): 846-849. |
[3] | Zhang Yamei, Liu Guohao, Tao Yue, Bao Jun. Role of JNK/c-Jun signaling pathway mediated by endoplasmic reticulum stress in triptolide-induced apoptosis of melanoma A375 cells in mice [J]. Chinese Journal of Dermatology, 2024, 57(8): 709-714. |
[4] | Qu Yuanyuan, Wang Peng, Zhang Jingzhan, Li Tingting, Kang Xiaojing. Role of circRNA 0001400/RELL1 in regulating the activation of mitogen-activated protein kinase signaling pathway during the development of Kaposi′s sarcoma [J]. Chinese Journal of Dermatology, 2024, 57(8): 685-692. |
[5] | Zhu Xue′e, Duan Manman, Ding Yuan. Long non-coding RNA-mediated competitive endogenous RNA regulatory network in keloids [J]. Chinese Journal of Dermatology, 2024, 57(7): 668-671. |
[6] | Pei Lu, Zheng Nana, Zeng Rong, Xie Yuanyuan, Xu Haoxiang, Duan Zhimin, Liu Yuzhen, Li Min, . Molecular mechanisms underlying the inflammatory response induced by Cutibacterium acnes biofilms in keratinocytes [J]. Chinese Journal of Dermatology, 2024, 57(4): 302-308. |
[7] | Wu Yubing, Wang Xiaoyu, An Binyi, Wu Yingying, Sang Hong, Kong Qingtao, . Role of cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes signaling pathway in the occurrence of psoriasis [J]. Chinese Journal of Dermatology, 2024, 0(3): 20230394-e20230394. |
[8] | Zhao Ying, Yang Yong, Wang Yan, Wei Qin, Wang Yetao. Role of macrophages in the pathogenesis and treatment of keloids [J]. Chinese Journal of Dermatology, 2024, 0(3): 20240090-e20240090. |
[9] | Chen Yuhong, Lyu Zhongfa. Regulatory mechanisms underlying the hair cycle [J]. Chinese Journal of Dermatology, 2024, 0(3): 20230226-e20230226. |
[10] | Liu Chenyang, Yuan Xinghua, Zhi Jiahui, Hem Kumari Rai, Lu Bo, Xu Weilu, Jin Zhehu. Effect of transmembrane protein 45A on extracellular matrix synthesis by keloid-derived fibroblasts [J]. Chinese Journal of Dermatology, 2023, 56(7): 666-669. |
[11] | Sun Linbo, Xu Jiaosheng. Curry-Jones syndrome: the first case reported in China [J]. Chinese Journal of Dermatology, 2023, 56(7): 626-629. |
[12] | Sang Pengfei, Fang Mingsong, Li Xuan, Cao Lin, Zhao Lingling, Liu Chang, Jiang Zhiyong, Zhu Fei. Effects of the ROCK1 gene on proliferation and migration of and related molecular expression in keloid fibroblasts [J]. Chinese Journal of Dermatology, 2023, 56(3): 222-228. |
[13] | Huang Wenhua, Zheng Zhenlong, Jin Zhehu. Role of transforming growth factor-β/Smad pathway and related factors in the pathogenesis of keloids [J]. Chinese Journal of Dermatology, 2023, 0(2): 20220556-e20220556. |
[14] | Qiao Jiaxi, Chen Yao, Du Kun, Chen Liuqing, Chen Jinbo, Wei Li. A preliminary study on the inhibitory effect of gallic acid on the growth of human keloid fibroblasts by the transforming growth factor-β/Sma- and Mad-related proteins signaling pathway [J]. Chinese Journal of Dermatology, 2023, 56(12): 1138-1145. |
[15] | Li Zhouna, Jin Wenyan, Jin Zhehu. Effect of ultrasound combined with 4-hydroxyphenyl-retinamide lipid microbubbles on type Ⅰ collagen α1 chain expression in keloid-derived fibroblasts [J]. Chinese Journal of Dermatology, 2022, 55(7): 596-598. |
|