[1] |
Coelho R, Cheong SL. Basal cell carcinoma excision guided by dermoscopy: a retrospective study in Macau[J]. Int J Dermatol Venereol, 2023,6(3):147⁃149. doi: 10.1097/JD9.0000000000000227.
|
[2] |
Guo WN, Li CY. Linking cellular metabolism to epigenetics in melanoma[J]. Int J Dermatol Venereol, 2021,4(3):168⁃173. doi: 10.1097/JD9.000000000 0000191.
|
[3] |
Li HY, Ren K, Wang C, et al. Skin organoid research progress and potential applications[J]. Int J Dermatol Venereol, 2022,5(2):101⁃106. doi: 10.1097/JD9.0000000000000201.
|
[4] |
Zhou Q, Meng Y, Li D, et al. Ferroptosis in cancer: from molecular mechanisms to therapeutic strategies[J]. Signal Transduct Target Ther, 2024,9(1):55. doi: 10.1038/s41392⁃024⁃01769⁃5.
|
[5] |
Bezrookove V, Kianian S, McGeever L, et al. The molecular evolution of melanoma distant metastases[J]. J Invest Dermatol, 2024:S0022⁃0202X(24)00271⁃00279. doi: 10. 1016/j.jid.2024. 03.029.
|
[6] |
Ubellacker JM, Tasdogan A, Ramesh V, et al. Lymph protects metastasizing melanoma cells from ferroptosis[J]. Nature, 2020,585(7823):113⁃118. doi: 10.1038/s41586⁃020⁃2623⁃z.
|
[7] |
Paris J, Wilhelm C, Lebbé C, et al. PROM2 overexpression induces metastatic potential through epithelial⁃to⁃mesenchymal transition and ferroptosis resistance in human cancers[J]. Clin Transl Med, 2024,14(3):e1632. doi: 10.1002/ctm2.1632.
|
[8] |
Fujimura T, Yoshino K, Kato H, et al. PhaseⅡ, multicenter study of plasminogen activator inhibitor⁃1 inhibitor (TM5614) plus nivolumab for treating anti⁃PD⁃1 antibody⁃refractory malignant melanoma: TM5614⁃MM trial[J]. Br J Dermatol, 2024,191(5):691⁃697. doi: 10.1093/bjd/ljae231.
|
[9] |
Wang H, Zhang H, Chen Y, et al. Targeting Wnt/β⁃catenin signaling exacerbates ferroptosis and increases the efficacy of melanoma immunotherapy via the regulation of MITF[J]. Cells, 2022,11(22):3580. doi: 10.3390/cells11223580.
|
[10] |
Luo M, Wu L, Zhang K, et al. miR⁃137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma[J]. Cell Death Differ, 2018,25(8):1457⁃1472. doi: 10.1038/s41418⁃017⁃0053⁃8.
|
[11] |
Liao Y, Jia X, Ren Y, et al. Suppressive role of microRNA⁃130b⁃3p in ferroptosis in melanoma cells correlates with DKK1 inhibition and Nrf2⁃HO⁃1 pathway activation[J]. Hum Cell, 2021,34(5):1532⁃1544. doi: 10.1007/s13577⁃021⁃00557⁃5.
|
[12] |
Hu FX, Liang JQ, Abudoureyimu D, et al. Bullous pemphigoid with nail damage associated with kaposi sarcoma: a case report[J]. Int J Dermatol Venereol, 2023,6(4):233⁃235. doi: 10.1097/JD9.0000000000000069.
|
[13] |
van der Meulen E, Anderton M, Blumenthal MJ, et al. Cellular receptors involved in KSHV infection[J]. Viruses, 2021,13(1):118. doi: 10.3390/v13010118.
|
[14] |
Li T, Gao SJ. KSHV hijacks FoxO1 to promote cell proliferation and cellular transformation by antagonizing oxidative stress[J]. J Med Virol, 2023,95(3):e28676. doi: 10.1002/jmv.28676.
|
[15] |
Stockwell BR. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications[J]. Cell, 2022,185(14):2401⁃2421. doi: 10.1016/j.cell.2022.06.003.
|
[16] |
Bender Ignacio RA, Lee JY, Rudek MA, et al. Brief report: a phase 1b/pharmacokinetic trial of PTC299, a novel PostTranscriptional VEGF inhibitor, for AIDS⁃related Kaposi's sarcoma: AIDS malignancy consortium trial 059[J]. J Acquir Immune Defic Syndr, 2016,72(1):52⁃57. doi: 10.1097/QAI.000 0000000000918.
|
[17] |
Yusifli Z, Ismayilov R, Kosemehmetoglu K, et al. A single⁃center retrospective analysis of Kaposi's sarcoma: is there a relationship between emmprin/CD147 expression and biological behavior?[J]. Int J Surg Pathol, 2024:10668969241226711. doi: 10.1177/10668969241226711.
|
[18] |
Ren HL, Wen GM, Zhao ZY, et al. Can CD147 work as a therapeutic target for tumors through COVID⁃19 infection?[J]. Int J Med Sci, 2022,19(14):2087⁃2092. doi: 10.7150/ijms.79162.
|
[19] |
Zhou J, Wang T, Zhang H, et al. KSHV vIL⁃6 promotes SIRT3⁃induced deacetylation of SERBP1 to inhibit ferroptosis and enhance cellular transformation by inducing lipoyltransferase 2 mRNA degradation[J/OL]. PLoS Pathog, 2024,20(3):e1012082. doi: 10.1371/journal.ppat.1012082.
|
[20] |
Li M, Jin S, Zhang Z, et al. Interleukin⁃6 facilitates tumor progression by inducing ferroptosis resistance in head and neck squamous cell carcinoma[J]. Cancer Lett, 2022,527:28⁃40. doi: 10.1016/j.canlet.2021.12.011.
|
[21] |
Wang T, Gong M, Cao Y, et al. Persistent ferroptosis promotes cervical squamous intraepithelial lesion development and oncogenesis by regulating KRAS expression in patients with high risk⁃HPV infection[J]. Cell Death Discov, 2022,8(1):201. doi: 10.1038/s41420⁃022⁃01013⁃5.
|
[22] |
Xie X, Tian L, Zhao Y, et al. BACH1⁃induced ferroptosis drives lymphatic metastasis by repressing the biosynthesis of monounsaturated fatty acids[J]. Cell Death Dis, 2023,14(1):48. doi: 10.1038/s41419⁃023⁃05571⁃z.
|
[23] |
Lee JH, Lee JD, Paulson K, et al. Enhancing immunogenic responses through CDK4/6 and HIF2α inhibition in Merkel cell carcinoma[J]. Heliyon, 2024,10(1):e23521. doi: 10.1016/j.heliyon.2023.e23521.
|
[24] |
Sarma B, Willmes C, Angerer L, et al. Artesunate affects T antigen expression and survival of virus⁃positive Merkel cell carcinoma[J]. Cancers (Basel), 2020,12(4):919. doi: 10.3390/cancers12040919.
|
[25] |
Kagami T, Yamade M, Suzuki T, et al. High expression level of CD44v8⁃10 in cancer stem⁃like cells is associated with poor prognosis in esophageal squamous cell carcinoma patients treated with chemoradiotherapy[J]. Oncotarget, 2018,9(79):34876⁃34888. doi: 10.18632/oncotarget.26172.
|
[26] |
Zhang X, Zhang M, Zhang Z, et al. Salidroside induces mitochondrial dysfunction and ferroptosis to inhibit melanoma progression through reactive oxygen species production[J]. Exp Cell Res, 2024,438(1):114034. doi: 10.1016/j.yexcr.2024.11 4034.
|
[27] |
Cheff DM, Huang C, Scholzen KC, et al. The ferroptosis inducing compounds RSL3 and ML162 are not direct inhibitors of GPX4 but of TXNRD1[J]. Redox Biol, 2023,62:102703. doi: 10.1016/j.redox.2023.102703.
|
[28] |
Tsoi J, Robert L, Paraiso K, et al. Multi⁃stage differentiation defines melanoma subtypes with differential vulnerability to drug⁃induced iron⁃dependent oxidative stress[J]. Cancer Cell, 2018,33(5):890⁃904. doi: 10.1016/j.ccell.2018.03.017.
|
[29] |
Ye J, Jiang X, Dong Z, et al. Low⁃concentration PTX and RSL3 inhibits tumor cell growth synergistically by inducing ferroptosis in mutant p53 hypopharyngeal squamous carcinoma[J]. Cancer Manag Res, 2019,11:9783⁃9792. doi: 10.2147/CMAR.S217944.
|
[30] |
Dorasamy MS, Ab A, Nellore K, et al. Synergistic inhibition of melanoma xenografts by Brequinar sodium and Doxorubicin[J]. Biomed Pharmacother, 2019,110:29⁃36. doi: 10.1016/j.biopha. 2018.11.010.
|
[31] |
Mishima E, Nakamura T, Zheng J, et al. DHODH inhibitors sensitize to ferroptosis by FSP1 inhibition[J]. Nature, 2023,619(7968):E9⁃E18. doi: 10.1038/s41586⁃023⁃06269⁃0.
|
[32] |
Erdem İS. Impact of ferroptosis inducers on chronic radiation⁃exposed survivor glioblastoma cells[J]. Anticancer Agents Med Chem, 2023,23(19):2154⁃2160. doi: 10.2174/18715206236662 30825110346.
|
[33] |
Hendricks JM, Doubravsky CE, Wehri E, et al. Identification of structurally diverse FSP1 inhibitors that sensitize cancer cells to ferroptosis[J]. Cell Chem Biol, 2023,30(9):1090⁃1103.e7. doi: 10.1016/j.chembiol.2023.04.007.
|
[34] |
Zhang D, Zhang M, Pang Y, et al. Folic acid⁃modified long⁃circulating liposomes loaded with sulfasalazine for targeted induction of ferroptosis in melanoma[J]. ACS Biomater Sci Eng, 2024,10(1):588⁃598. doi: 10.1021/acsbiomaterials.3c01223.
|
[35] |
Liu N, Zhang J, Yin M, et al. Inhibition of xCT suppresses the efficacy of anti⁃PD⁃1/L1 melanoma treatment through exosomal PD⁃L1⁃induced macrophage M2 polarization[J]. Mol Ther, 2021,29(7):2321⁃2334. doi: 10.1016/j.ymthe.2021.03.013.
|
[36] |
Wang G, Xie L, Li B, et al. A nanounit strategy reverses immune suppression of exosomal PD⁃L1 and is associated with enhanced ferroptosis[J]. Nat Commun, 2021,12(1):5733. doi: 10.1038/s41467⁃021⁃25990⁃w.
|
[37] |
Wang Q, He J, Qi Y, et al. Ultrasound⁃enhanced nano catalyst with ferroptosis⁃apoptosis combined anticancer strategy for metastatic uveal melanoma[J]. Biomaterials, 2024,305:122458. doi: 10.1016/j.biomaterials.2023.122458.
|
[38] |
Zhao S, Li Y, Cheng B. A tumor microenvironment⁃responsive microneedle patch for chemodynamic therapy of oral squamous cell carcinoma[J]. Nanoscale Adv, 2023,5(22):6162⁃6169. doi: 10.1039/d3na00527e.
|