Chinese Journal of Dermatology ›› 2024, Vol. 57 ›› Issue (4): 289-294.doi: 10.35541/cjd.20240074
• Expert Commentary • Previous Articles Next Articles
Ju Qiang, Li Jiaqi
Received:
2024-02-02
Revised:
2024-02-20
Online:
2024-04-15
Published:
2024-04-07
Contact:
Ju Qiang
E-mail:qiangju@aliyun.com
Supported by:
Ju Qiang, Li Jiaqi. Acne vulgaris revisited: from pathogenesis to treatment strategies[J]. Chinese Journal of Dermatology, 2024, 57(4): 289-294.doi:10.35541/cjd.20240074
[1] | Acne Group, Combination of Traditional and Western Medicine Dermatology; Acne Group, Chinese Society of Dermatology; Acne Group, Chinese Dermatologist Association, et al. Chinese guidelines for the management of acne vulgaris: 2019 update[J]. Int J Dermatol Venereol, 2019, 2(3): 129⁃138. doi:10.1097/jd9. 0000000000000043. |
[2] | Ju Q, Tao T, Hu T, et al. Sex hormones and acne[J]. Clin Dermatol, 2017,35(2):130⁃137. doi: 10.1016/j.clindermatol. 2016.10.004. |
[3] | 陆凌怡, 赖慧颖, 鞠强. 痤疮与胰岛素抵抗相关性的研究进展[J]. 国际皮肤性病学杂志, 2017,43(1):35⁃38. doi: 10.3760/cma.j.issn.1673⁃4173.2017.01.010. |
[4] | Zouboulis CC. Endocrinology and immunology of acne: two sides of the same coin[J]. Exp Dermatol, 2020,29(9):840⁃859. doi: 10.1111/exd.14172. |
[5] | Heng A, Say YH, Sio YY, et al. Gene variants associated with acne vulgaris presentation and severity: a systematic review and meta⁃analysis[J]. BMC Med Genomics, 2021,14(1):103. doi: 10.1186/s12920⁃021⁃00953⁃8. |
[6] | Melnik BC. Acne transcriptomics: fundamentals of acne pathogenesis and isotretinoin treatment[J]. Cells, 2023,12(22):2600. doi: 10.3390/cells12222600. |
[7] | Melnik BC. Acne vulgaris: the metabolic syndrome of the pilosebaceous follicle[J]. Clin Dermatol, 2018,36(1):29⁃40. doi: 10.1016/j.clindermatol.2017.09.006. |
[8] | Sadati MS, Yazdanpanah N, Shahriarirad R, et al. Efficacy of metformin vs. doxycycline in treating acne vulgaris: an assessor⁃blinded, add⁃on, randomized, controlled clinical trial[J]. J Cosmet Dermatol, 2023,22(10):2816⁃2823. doi: 10.1111/jocd. 15785. |
[9] | Dréno B, Pécastaings S, Corvec S, et al. Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: a brief look at the latest updates[J]. J Eur Acad Dermatol Venereol, 2018,32 (Suppl 2) :5⁃14. doi: 10.1111/jdv.15043. |
[10] | Kistowska M, Gehrke S, Jankovic D, et al. IL⁃1β drives inflammatory responses to Propionibacterium acnes in vitro and in vivo[J]. J Invest Dermatol, 2014,134(3):677⁃685. doi: 10.1038/jid.2013.438. |
[11] | Kistowska M, Meier B, Proust T, et al. Propionibacterium acnes promotes Th17 and Th17/Th1 responses in acne patients[J]. J Invest Dermatol, 2015,135(1):110⁃118. doi: 10.1038/jid.2014. 290. |
[12] | Almoughrabie S, Cau L, Cavagnero K, et al. Commensal Cutibacterium acnes induce epidermal lipid synthesis important for skin barrier function[J]. Sci Adv, 2023,9(33):eadg6262. doi: 10.1126/sciadv.adg6262. |
[13] | Cao K, Chen G, Chen W, et al. Formalin⁃killed Propionibacterium acnes activates the aryl hydrocarbon receptor and modifies differentiation of SZ95 sebocytes in vitro[J]. Eur J Dermatol, 2021,31(1):32⁃40. doi: 10.1684/ejd.2021.3964. |
[14] | Dagnelie MA, Montassier E, Khammari A, et al. Inflammatory skin is associated with changes in the skin microbiota composition on the back of severe acne patients[J]. Exp Dermatol, 2019,28(8):961⁃967. doi: 10.1111/exd.13988. |
[15] | Dagnelie MA, Corvec S, Timon⁃David E, et al. Cutibacterium acnes and Staphylococcus epidermidis: the unmissable modulators of skin inflammatory response[J]. Exp Dermatol, 2022,31(3):406⁃412. doi: 10.1111/exd.14467. |
[16] | Christensen GJ, Scholz CF, Enghild J, et al. Antagonism between Staphylococcus epidermidis and Propionibacterium acnes and its genomic basis[J]. BMC Genomics, 2016,17:152. doi: 10.1186/s12864⁃016⁃2489⁃5. |
[17] | Ramasamy S, Barnard E, Dawson TL Jr, et al. The role of the skin microbiota in acne pathophysiology[J]. Br J Dermatol, 2019,181(4):691⁃699. doi: 10.1111/bjd.18230. |
[18] | Li CX, You ZX, Lin YX, et al. Skin microbiome differences relate to the grade of acne vulgaris[J]. J Dermatol, 2019,46(9):787⁃790. doi: 10.1111/1346⁃8138.14952. |
[19] | Dagnelie MA, Corvec S, Saint⁃Jean M, et al. Decrease in diversity of Propionibacterium acnes phylotypes in patients with severe acne on the back[J]. Acta Derm Venereol, 2018,98(2):262⁃267. doi: 10.2340/00015555⁃2847. |
[20] | Agak GW, Kao S, Ouyang K, et al. Phenotype and antimicrobial activity of Th17 cells induced by Propionibacterium acnes strains associated with healthy and acne skin[J]. J Invest Dermatol, 2018,138(2):316⁃324. doi: 10.1016/j.jid.2017.07.842. |
[21] | Borrel V, Gannesen AV, Barreau M, et al. Adaptation of acneic and non acneic strains of Cutibacterium acnes to sebum⁃like environment[J]. Microbiologyopen, 2019,8(9):e00841. doi: 10.1002/mbo3.841. |
[22] | Kim SK, Lee M, Lee YQ, et al. Genome⁃scale metabolic modeling and in silico analysis of opportunistic skin pathogen Cutibacterium acnes[J]. Front Cell Infect Microbiol, 2023,13:1099314. doi: 10.3389/fcimb.2023.1099314. |
[23] | O'Neill AM, Cavagnero KJ, Seidman JS, et al. Genetic and functional analyses of Cutibacterium acnes isolates reveal the association of a linear plasmid with skin inflammation[J]. J Invest Dermatol, 2024,144(1):116⁃124.e4. doi: 10.1016/j.jid.2023.05.029. |
[24] | 李嘉祺, 梁梦晨, 吴心怡, 等. 中度寻常痤疮患者皮损毛囊内表皮葡萄球菌基因序列分型的初步研究[J]. 中华皮肤科杂志, 2024,57(4):295⁃301. doi: 10.35541/cjd.20230625. |
[25] | Kelhälä HL, Aho V, Fyhrquist N, et al. Isotretinoin and lymecycline treatments modify the skin microbiota in acne[J]. Exp Dermatol, 2018,27(1):30⁃36. doi: 10.1111/exd.13397. |
[26] | Goodarzi A, Mozafarpoor S, Bodaghabadi M, et al. The potential of probiotics for treating acne vulgaris: a review of literature on acne and microbiota[J]. Dermatol Ther, 2020,33(3):e13279. doi: 10.1111/dth.13279. |
[27] | Karoglan A, Paetzold B, Pereira de Lima J, et al. Safety and efficacy of topically applied selected Cutibacterium acnes strains over five weeks in patients with acne vulgaris: an open⁃label, pilot study[J]. Acta Derm Venereol, 2019,99(13):1253⁃1257. doi: 10.2340/00015555⁃3323. |
[28] | Nolan ZT, Banerjee K, Cong Z, et al. Treatment response to isotretinoin correlates with specific shifts in Cutibacterium acnes strain composition within the follicular microbiome[J]. Exp Dermatol, 2023,32(7):955⁃964. doi: 10.1111/exd.14798. |
[29] | Selway JL, Kurczab T, Kealey T, et al. Toll⁃like receptor 2 activation and comedogenesis: implications for the pathogenesis of acne[J]. BMC Dermatol, 2013,13:10. doi: 10.1186/1471⁃5945⁃13⁃10. |
[30] | Hou X, Wei Z, Zouboulis CC, et al. Aging in the sebaceous gland[J]. Front Cell Dev Biol, 2022,10:909694. doi: 10.3389/fcell.2022.909694. |
[31] | Shang W, Tan A, van Steensel M, et al. Aberrant Wnt signaling induces comedo⁃like changes in the murine upper hair follicle[J]. J Invest Dermatol, 2022,142(10):2603⁃2612.e6. doi: 10.1016/j.jid.2021.11.034. |
[32] | Oulès B, Philippeos C, Segal J, et al. Contribution of GATA6 to homeostasis of the human upper pilosebaceous unit and acne pathogenesis[J]. Nat Commun, 2020,11(1):5067. doi: 10.1038/s41467⁃020⁃18784⁃z. |
[33] | Hu T, Wang D, Yu Q, et al. Aryl hydrocarbon receptor negatively regulates lipid synthesis and involves in cell differentiation of SZ95 sebocytes in vitro[J]. Chem Biol Interact, 2016,258:52⁃58. doi: 10.1016/j.cbi.2016.08.012. |
[34] | Hou XX, Chen G, Hossini AM, et al. Aryl hydrocarbon receptor modulates the expression of TNF⁃α and IL⁃8 in human sebocytes via the MyD88⁃p65NF⁃κB/p38MAPK signaling pathways[J]. J Innate Immun, 2019,11(1):41⁃51. doi: 10.1159/000491029. |
[35] | Saurat JH, Sorg O, Leti M, et al. Novel silybum marianum achene extract and uses thereof in dermatology and dermo⁃cosmetics: US, 11285185[P/OL]. 2019⁃07⁃13[2024⁃02⁃02]. https://patents.justia.com/patent/20190175677. |
[36] | Picardo M, Cardinali C, La Placa M, et al. Efficacy and safety of N⁃acetyl⁃GED⁃0507⁃34⁃LEVO gel in patients with moderate⁃to severe facial acne vulgaris: a phase IIb randomized double⁃blind, vehicle⁃controlled trial[J]. Br J Dermatol, 2022,187(4):507⁃514. doi: 10.1111/bjd.21663. |
[37] | Liu L, Xue Y, Chen J, et al. DNA methylation profiling and integrative multi⁃omics analysis of skin samples reveal important contribution of epigenetics and immune response in the pathogenesis of acne vulgaris[J]. Clin Immunol, 2023,255:109773. doi: 10.1016/j.clim.2023.109773. |
[38] | Wang H, Dang T, Feng J, et al. Identification of differentially methylated genes for severe acne by genome⁃wide DNA methylation and gene expression analysis[J]. Epigenetics, 2023,18(1):2199373. doi: 10.1080/15592294.2023.2199373. |
[39] | Yang XY, Wu WJ, Yang C, et al. Association of HSD17B3 and HSD3B1 polymorphisms with acne vulgaris in Southwestern Han Chinese[J]. Dermatology, 2013,227(3):202⁃208. doi: 10.1159/000353581. |
[40] | Yang T, Wu WJ, Tian LM, et al. The associations of androgen⁃related genes CYP21A2 and CYP19A1 with severe acne vulgaris in patients from Southwest China[J]. Clin Cosmet Investig Dermatol, 2021,14:313⁃331. doi: 10.2147/CCID.S293171. |
[41] | He L, Wu WJ, Yang JK, et al. Two new susceptibility loci 1q24.2 and 11p11.2 confer risk to severe acne[J]. Nat Commun, 2014,5:2870. doi: 10.1038/ncomms3870. |
[42] | Carlavan I, Bertino B, Rivier M, et al. Atrophic scar formation in patients with acne involves long⁃acting immune responses with plasma cells and alteration of sebaceous glands[J]. Br J Dermatol, 2018,179(4):906⁃917. doi: 10.1111/bjd.16680. |
[43] | Moon J, Yoon JY, Yang JH, et al. Atrophic acne scar: a process from altered metabolism of elastic fibres and collagen fibres based on transforming growth factor⁃β1 signalling[J]. Br J Dermatol, 2019,181(6):1226⁃1237. doi: 10.1111/bjd.17851. |
[44] | Gudjonsson JE, Tsoi LC, Ma F, et al. Contribution of plasma cells and B cells to hidradenitis suppurativa pathogenesis[J]. JCI Insight, 2020,5(19):e139930. doi: 10.1172/jci.insight. 139930. |
[45] | Sabat R, Šimaitė D, Gudjonsson JE, et al. Neutrophilic granulocyte⁃derived B⁃cell activating factor supports B cells in skin lesions in hidradenitis suppurativa[J]. J Allergy Clin Immunol, 2023,151(4):1015⁃1026. doi: 10.1016/j.jaci.2022. 10.034. |
[46] | Kurokawa I, Layton AM, Ogawa R. Updated treatment for acne: targeted therapy based on pathogenesis[J]. Dermatol Ther (Heidelb), 2021,11(4):1129⁃1139. doi: 10.1007/s13555⁃021⁃00552⁃6. |
[1] | Chen Qitao, Li Yuqian, Shao Guanghui, Zhu Jing, Zhu Qilin, Li Zhongming, Du Xufeng, Fan Weixin. Erosive pustular dermatosis of the scalp [J]. Chinese Journal of Dermatology, 2025, 58(3): 272-275. |
[2] | Jiang Jiayi, Wang Daguang. Pathogenesis of nail damages secondary to systemic diseases [J]. Chinese Journal of Dermatology, 2025, 58(3): 282-285. |
[3] | Guo Weinan, Wang Junxia, Chen Hui, Hao Junfeng, Li Bing, Wei Jingyi, Zhao Tao. Clinical efficacy of autologous adipose-derived stem cell gel grafting in the treatment of depressed acne scars [J]. Chinese Journal of Dermatology, 2025, 58(2): 167-169. |
[4] | Wang Di, Zhang Ruijun, Kang Yuying. Pathogenesis and treatment of seborrheic dermatitis [J]. Chinese Journal of Dermatology, 2025, 58(1): 89-92. |
[5] | Chen Haotian, Liu Lian, Zhang Ting, Liu Qingfeng, Li Xiaoxue, Diao Ping, Jiang Xian. Port-wine stains: mechanisms underlying the development and progression [J]. Chinese Journal of Dermatology, 2024, 57(7): 661-664. |
[6] | Jiang Xian, Liu Lian, Zhang Ting. Treatment of port-wine stains: current status and prospects [J]. Chinese Journal of Dermatology, 2024, 57(7): 590-594. |
[7] | Feng Mengdi, Wang Wenqing. Regulatory roles of transcription factors and receptors in the pathogenesis of acne [J]. Chinese Journal of Dermatology, 2024, 57(6): 575-578. |
[8] | Yan Rufan, Liao Jieyue, Guo Ziyu, Yao Nan, Zhou Wenyu, Luo Shuaihantian, Zhang Guiying, Zhao Ming. Pathogenesis and targeted therapy of pemphigus [J]. Chinese Journal of Dermatology, 2024, 57(4): 374-378. |
[9] | Li Jiaqi, Liang Mengchen, Wu Xinyi, Zhang Qiujing, Li Sitong, Mo Xiaohui, Ju Qiang. Staphylococcus epidermidis phylotypes in hair follicles in skin lesions of patients with moderate acne vulgaris: a preliminary study [J]. Chinese Journal of Dermatology, 2024, 57(4): 295-301. |
[10] | Zong Yangyongyi, Ma Chujun, Su Zhonglan. Eczematization following the treatment of psoriasis with biological agents: pathogenesis and management [J]. Chinese Journal of Dermatology, 2024, 0(3): 20220578-e20220578. |
[11] | Wang Yukun, Liu Jie. Application of deep learning in non-neoplastic dermatoses [J]. Chinese Journal of Dermatology, 2024, 0(3): 20220660-e20220660. |
[12] | Li Ji, Xie Hongfu. How to avoid misdiagnosis of rosacea [J]. Chinese Journal of Dermatology, 2024, 57(2): 119-122. |
[13] | Liu Tingwei, Meng Xiaoqi, Gu Duoduo, Pan Ruoxin, Zhang Yue, Xu Yang. Advances in the pathogenesis of rosacea [J]. Chinese Journal of Dermatology, 2024, 57(2): 186-190. |
[14] | Zhong Jiemin, Shao Lei, Liang Yimin, Huang Qiongxiao, Xia Manqi, Liu Yumei. Comparative study on efficacy and safety of single microneedle radiofrequency versus photodynamic therapy in the treatment of inflammatory lesions of moderate to severe facial acne vulgaris [J]. Chinese Journal of Dermatology, 2023, 56(8): 751-755. |
[15] | Song Zhiqiang, Chen Qiquan, Ge Lan. Insights into the progress in targeted therapy of atopic dermatitis from the perspective of its pathogenesis [J]. Chinese Journal of Dermatology, 2023, 56(8): 718-723. |
|