Chinese Journal of Dermatology ›› 2024, e20220660.doi: 10.35541/cjd.20220660
• Reviews • Previous Articles Next Articles
Wang Yukun, Liu Jie
Received:
2022-09-16
Revised:
2022-11-30
Online:
2024-01-29
Published:
2024-03-01
Contact:
Liu Jie
E-mail:Liujie04672@pumch.cn
Supported by:
Wang Yukun, Liu Jie. Application of deep learning in non-neoplastic dermatoses[J]. Chinese Journal of Dermatology,2024,e20220660. doi:10.35541/cjd.20220660
[1] | 刘洁, 邹先彪. 实用皮肤镜学[M]. 北京:人民卫生出版社, 2021. |
[2] | Liu J, Zou XB. Practical dermoscopy[M]. Singapore: Springer Singapore, 2022. |
[3] | Esteva A, Kuprel B, Novoa RA, et al. Dermatologist⁃level classification of skin cancer with deep neural networks[J]. Nature, 2017,542(7639):115⁃118. doi: 10.1038/nature21056. |
[4] | Zhao S, Xie B, Li Y, et al. Smart identification of psoriasis by images using convolutional neural networks: a case study in China[J]. J Eur Acad Dermatol Venereol, 2020,34(3):518⁃524. doi: 10.1111/jdv.15965. |
[5] | Yang Y, Wang J, Xie F, et al. A convolutional neural network trained with dermoscopic images of psoriasis performed on par with 230 dermatologists[J]. Comput Biol Med, 2021,139:104924. doi: 10.1016/j.compbiomed.2021.104924. |
[6] | Aijaz SF, Khan SJ, Azim F, et al. Deep learning application for effective classification of different types of psoriasis[J]. J Healthc Eng, 2022,2022:7541583. doi: 10.1155/2022/7541583. |
[7] | Meienberger N, Anzengruber F, Amruthalingam L, et al. Observer⁃independent assessment of psoriasis⁃affected area using machine learning[J]. J Eur Acad Dermatol Venereol, 2020,34(6):1362⁃1368. doi: 10.1111/jdv.16002. |
[8] | Pal A, Garain U, Chandra A, et al. Psoriasis skin biopsy image segmentation using Deep Convolutional Neural Network[J]. Comput Methods Programs Biomed, 2018,159:59⁃69. doi: 10. 1016/j.cmpb.2018.01.027. |
[9] | Schaap MJ, Cardozo NJ, Patel A, et al. Image⁃based automated psoriasis area severity index scoring by convolutional neural networks[J]. J Eur Acad Dermatol Venereol, 2022,36(1):68⁃75. doi: 10.1111/jdv.17711. |
[10] | Okamoto T, Kawai M, Ogawa Y, et al. Artificial intelligence for the automated single⁃shot assessment of psoriasis severity[J]. J Eur Acad Dermatol Venereol, 2022,36(12):2512⁃2515. doi: 10.1111/jdv.18354. |
[11] | Damiani G, Conic R, Pigatto P, et al. Predicting secukinumab fast⁃responder profile in psoriatic patients: advanced application of artificial⁃neural⁃networks (ANNs)[J]. J Drugs Dermatol, 2020,19(12):1241⁃1246. doi: 10.36849/JDD.2020.5006. |
[12] | Guimarães P, Batista A, Zieger M, et al. Artificial intelligence in multiphoton tomography: atopic dermatitis diagnosis[J]. Sci Rep, 2020,10(1):7968. doi: 10.1038/s41598⁃020⁃64937⁃x. |
[13] | Rasheed A, Umar AI, Shirazi SH, et al. Automatic eczema classification in clinical images based on hybrid deep neural network[J]. Comput Biol Med, 2022,147:105807. doi: 10.1016/j.compbiomed.2022.105807. |
[14] | Bang CH, Yoon JW, Ryu JY, et al. Automated severity scoring of atopic dermatitis patients by a deep neural network[J]. Sci Rep, 2021,11(1):6049. doi: 10.1038/s41598⁃021⁃85489⁃8. |
[15] | Wang Y, Qin D, Jin L, et al. Caffeoyl malic acid is a potential dual inhibitor targeting TNFα/IL⁃4 evaluated by a combination strategy of network analysis⁃deep learning⁃molecular simulation[J]. Comput Biol Med, 2022,145:105410. doi: 10.1016/j.compbiomed.2022.105410. |
[16] | 中华医学会皮肤性病学分会特应性皮炎研究中心, 中华医学会皮肤性病学分会儿童学组. 度普利尤单抗治疗特应性皮炎专家共识[J]. 中华皮肤科杂志, 2022,55(6):465⁃470. doi: 10.35541/cjd.20210885. |
[17] | Han SS, Park GH, Lim W, et al. Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: automatic construction of onychomycosis datasets by region⁃based convolutional deep neural network[J]. PLoS One, 2018,13(1):e0191493. doi: 10.1371/journal.pone. 0191493. |
[18] | Kim YJ, Han SS, Yang HJ, et al. Prospective, comparative evaluation of a deep neural network and dermoscopy in the diagnosis of onychomycosis[J]. PLoS One, 2020,15(6):e0234334. doi: 10.1371/journal.pone.0234334. |
[19] | Decroos F, Springenberg S, Lang T, et al. A deep learning approach for histopathological diagnosis of onychomycosis: not inferior to analogue diagnosis by histopathologists[J]. Acta Derm Venereol, 2021,101(8):adv00532. doi: 10.2340/00015555⁃3893. |
[20] | Zhu X, Zheng B, Cai W, et al. Deep learning⁃based diagnosis models for onychomycosis in dermoscopy[J]. Mycoses, 2022,65(4):466⁃472. doi: 10.1111/myc.13427. |
[21] | Yilmaz A, Göktay F, Varol R, et al. Deep convolutional neural networks for onychomycosis detection using microscopic images with KOH examination[J]. Mycoses, 2022,65(12):1119⁃1126. doi: 10.1111/myc.13498. |
[22] | Shen X, Zhang J, Yan C, et al. An automatic diagnosis method of facial acne vulgaris based on convolutional neural network[J]. Sci Rep, 2018,8(1):5839. doi: 10.1038/s41598⁃018⁃24204⁃6. |
[23] | Lim ZV, Akram F, Ngo CP, et al. Automated grading of acne vulgaris by deep learning with convolutional neural networks[J]. Skin Res Technol, 2020,26(2):187⁃192. doi: 10.1111/srt.12794. |
[24] | Yang Y, Guo L, Wu Q, et al. Construction and evaluation of a deep learning model for assessing acne vulgaris using clinical images[J]. Dermatol Ther (Heidelb), 2021,11(4):1239⁃1248. doi: 10.1007/s13555⁃021⁃00541⁃9. |
[25] | Seité S, Khammari A, Benzaquen M, et al. Development and accuracy of an artificial intelligence algorithm for acne grading from smartphone photographs[J]. Exp Dermatol, 2019,28(11):1252⁃1257. doi: 10.1111/exd.14022. |
[26] | Wang J, Luo Y, Wang Z, et al. A cell phone app for facial acne severity assessment[J]. Appl Intell (Dordr), 2023,53(7):7614⁃7633. doi: 10.1007/s10489⁃022⁃03774⁃z. |
[27] | Phan DT, Ta QB, Huynh TC, et al. A smart LED therapy device with an automatic facial acne vulgaris diagnosis based on deep learning and internet of things application[J]. Comput Biol Med, 2021,136:104610. doi: 10.1016/j.compbiomed.2021.104610. |
[28] | Binol H, Plotner A, Sopkovich J, et al. Ros⁃NET: a deep convolutional neural network for automatic identification of rosacea lesions[J]. Skin Res Technol, 2020,26(3):413⁃421. doi: 10.1111/srt.12817. |
[29] | Zhao Z, Wu CM, Zhang S, et al. A novel convolutional neural network for the diagnosis and classification of rosacea: usability study[J]. JMIR Med Inform, 2021,9(3):e23415. doi: 10.2196/23415. |
[30] | Wu H, Yin H, Chen H, et al. A deep learning⁃based smartphone platform for cutaneous lupus erythematosus classification assistance: simplifying the diagnosis of complicated diseases[J]. J Am Acad Dermatol, 2021,85(3):792⁃793. doi: 10.1016/j.jaad. 2021.02.043. |
[31] | Yang Y, Ge Y, Guo L, et al. Development and validation of two artificial intelligence models for diagnosing benign, pigmented facial skin lesions[J]. Skin Res Technol, 2021,27(1):74⁃79. doi: 10.1111/srt.12911. |
[32] | Guo L, Yang Y, Ding H, et al. A deep learning⁃based hybrid artificial intelligence model for the detection and severity assessment of vitiligo lesions[J]. Ann Transl Med, 2022,10(10):590. doi: 10.21037/atm⁃22⁃1738. |
[33] | Lee S, Lee JW, Choe SJ, et al. Clinically applicable deep learning framework for measurement of the extent of hair loss in patients with alopecia areata[J]. JAMA Dermatol, 2020,156(9):1018⁃1020. doi: 10.1001/jamadermatol.2020.2188. |
[34] | Gao M, Wang Y, Xu H, et al. Deep learning⁃based trichoscopic image analysis and quantitative model for predicting basic and specific classification in male androgenetic alopecia[J]. Acta Derm Venereol, 2022,102:adv00635. doi: 10.2340/actadv.v101. 564. |
[1] | Huang Hejin, Li Xinya, He Ziqing, Xi Wenwen, Tang Yujun, Zhang Jianfei, Xiao Xia, Jiang Bin, Yang Feng. Postoperative complications in 3 000 patients with axillary osmidrosis after minimally invasive rotary cutting surgery: a retrospective study [J]. Chinese Journal of Dermatology, 2025, 0(5): 20230291-e0230291. |
[2] | Committee on Psoriasis, Chinese Society of Dermatology. Expert proposal on apremilast for the treatment of psoriasis (2025 edition) [J]. Chinese Journal of Dermatology, 2025, 58(5): 416-424. |
[3] | The Consensus Development Expert Group on Diagnosis and Treatment of Port-wine Stain in Chinese Children, Pediatric Dermatologist Committee, China Dermatologist Association. Expert consensus on diagnosis and treatment of port-wine stain in children (2025 edition) [J]. Chinese Journal of Dermatology, 2025, 58(5): 396-404. |
[4] | China Dermatologist Association, Treatment Group, Chinese Society of Dermatology, Dermatology Branch of China International Exchange and Promotive Association for Medical and Health Care, National Clinical Research Center for Dermatologic and Immunologic Diseases, Rare Skin Diseases Committee, China Alliance for Rare Diseases. Diagnosis and treatment of bullous pemphigoid: an expert consensus statement (2025 edition) [J]. Chinese Journal of Dermatology, 2025, 58(5): 405-415. |
[5] | Skin Cancer Research Group, Committee on Dermatology, Chinese Association of Integrative Medicine, Melanoma Society of China Anti-Cancer Association, Society of Integrated Rehabilitation of Skin Tumors, China Anti-Cancer Association. Expert consensus on diagnosis and treatment of pigmented nevi (2025 edition) [J]. Chinese Journal of Dermatology, 2025, 58(5): 387-395. |
[6] | Li Ziyu, Lu Yan. Paying attention to severe skin diseases after COVID-19 [J]. Chinese Journal of Dermatology, 2025, 58(4): 378-383. |
[7] | Bao Shijie, Han Mei, Zhou Xiaoyong. Analysis of factors influencing the efficacy of etanercept in the treatment of toxic epidermal necrolysis based on literature review [J]. Chinese Journal of Dermatology, 2025, 58(4): 352-355. |
[8] | Group on Pediatric Dermatology, China Dermatologist Association, Committee on Psoriasis, Chinese Society of Dermatology. Expert consensus on the diagnosis and treatment of pediatric pustular psoriasis in China (2025 version) [J]. Chinese Journal of Dermatology, 2025, 58(4): 297-306. |
[9] | He Chunxia, Jin Hongzhong . Principles, current status, challenges and perspectives in the diagnosis and treatment of critical dermatological emergencies [J]. Chinese Journal of Dermatology, 2025, 58(4): 307-314. |
[10] | Mu Kui, Guo Hui, Wen Haiquan, Long Hai, Liu Yu, Luo Shuaihantian, Huang Xin, Zhou Xingyu, Xiao Rong, Li Yaping. Efficacy and safety analysis of combined telitacicept in 25 patients with systemic lupus erythematosus based on standard therapy [J]. Chinese Journal of Dermatology, 2025, 58(4): 322-327. |
[11] | Chinese Society of Dermatology, China Dermatologist Association, Dermatology Branch of China International Exchange and Promotive Association for Medical and Health Care, Rare Skin Diseases Committee, China Alliance for Rare Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases. Expert consensus on the diagnosis and treatment of paraneoplastic pemphigus in China (2025 version) [J]. Chinese Journal of Dermatology, 2025, 58(4): 289-296. |
[12] | Chen Yao, Yu Lang, Jiang Qian, Yu Huiyuan, Chen Liuqing, Chen Jinbo. Comparison of optical coherence tomography imaging features between bullous pemphigoid and pemphigus [J]. Chinese Journal of Dermatology, 2025, 58(3): 216-220. |
[13] | Chen Qitao, Li Yuqian, Shao Guanghui, Zhu Jing, Zhu Qilin, Li Zhongming, Du Xufeng, Fan Weixin. Erosive pustular dermatosis of the scalp [J]. Chinese Journal of Dermatology, 2025, 58(3): 272-275. |
[14] | Li Xiuzhen, Xu Xiulian. Effects of interleukin-23 inhibitors on psoriasis comorbidities [J]. Chinese Journal of Dermatology, 2025, 58(3): 268-272. |
[15] | Lianghong Chen Yan SUN Jing-Yu WANG. Benvitimod for the treatment of dermatoses [J]. Chinese Journal of Dermatology, 2025, 58(3): 266-268. |
|