Chinese Journal of Dermatology ›› 2023, Vol. 56 ›› Issue (12): 1173-1176.doi: 10.35541/cjd.20210400
• Reviews • Previous Articles Next Articles
Xie Deqiong1, Yang Kaiying1, Yang Yang1, Chen Siyuan2, Ji Yi1
Received:
2021-05-24
Revised:
2021-10-27
Online:
2023-12-15
Published:
2023-12-05
Contact:
Ji Yi
E-mail:jijiyuanyuan@163.com
Supported by:
Xie Deqiong, Yang Kaiying, Yang Yang, Chen Siyuan, Ji Yi. Long non-coding RNAs in infantile hemangioma[J]. Chinese Journal of Dermatology, 2023, 56(12): 1173-1176.doi:10.35541/cjd.20210400
[1] | Munden A, Butschek R, Tom WL, et al. Prospective study of infantile haemangiomas: incidence, clinical characteristics and association with placental anomalies[J]. Br J Dermatol, 2014,170(4):907⁃913. doi: 10.1111/bjd.12804. |
[2] | 中华医学会皮肤性病学分会儿童学组, 中华医学会儿科学分会皮肤性病学组, 中国医师协会皮肤科医师分会儿童皮肤病专业委员会, 等. β受体阻滞剂治疗婴儿血管瘤中国专家共识[J]. 中华皮肤科杂志, 2020,53(7):493⁃500. doi: 10.35541/cjd.20200302. |
[3] | 杨开颖, 陈思源, 吉毅. 婴儿血管瘤发病过程中的关键信号通路[J]. 国际皮肤性病学杂志, 2017,43(6):369⁃373. doi: 10. 3760/cma.j.issn.1673⁃4173.2017.06.014. |
[4] | Ji Y, Chen S, Xu C, et al. The use of propranolol in the treatment of infantile haemangiomas: an update on potential mechanisms of action[J]. Br J Dermatol, 2015,172(1):24⁃32. doi: 10.1111/bjd.13388. |
[5] | 杨开颖, 代诗懿, 邱桐, 等. 婴儿血管瘤长链非编码RNA与mRNA表达谱分析[J]. 中华皮肤科杂志, 2020,53(7):508⁃513. doi: 10.35541/cjd.20191016. |
[6] | Yu B, Wang S. Angio⁃LncRs: lncRNAs that regulate angiogenesis and vascular disease[J]. Theranostics, 2018,8(13):3654⁃3675. doi: 10.7150/thno.26024. |
[7] | St Laurent G, Wahlestedt C, Kapranov P. The landscape of long noncoding RNA classification[J]. Trends Genet, 2015,31(5):239⁃251. doi: 10.1016/j.tig.2015.03.007. |
[8] | Dahariya S, Paddibhatla I, Kumar S, et al. Long non⁃coding RNA: classification, biogenesis and functions in blood cells[J]. Mol Immunol, 2019,112:82⁃92. doi: 10.1016/j.molimm.2019.04.011. |
[9] | Kumar MM, Goyal R. LncRNA as a therapeutic target for angiogenesis[J]. Curr Top Med Chem, 2017,17(15):1750⁃1757. doi: 10.2174/1568026617666161116144744. |
[10] | Simion V, Haemmig S, Feinberg MW. LncRNAs in vascular biology and disease[J]. Vascul Pharmacol, 2019,114:145⁃156. doi: 10.1016/j.vph.2018.01.003. |
[11] | Qu Y, Tan HY, Chan YT, et al. The functional role of long noncoding RNA in resistance to anticancer treatment[J]. Ther Adv Med Oncol, 2020,12:175883592 0927850. doi: 10.1177/1758835920927850. |
[12] | Fan C, Tang Y, Wang J, et al. Role of long non⁃coding RNAs in glucose metabolism in cancer[J]. Mol Cancer, 2017,16(1):130. doi: 10.1186/s12943⁃017⁃0699⁃3. |
[13] | Wu Z, Liu X, Liu L, et al. Regulation of lncRNA expression[J]. Cell Mol Biol Lett, 2014,19(4):561⁃575. doi: 10.2478/s11658⁃014⁃0212⁃6. |
[14] | Zhang K, Shi ZM, Chang YN, et al. The ways of action of long non⁃coding RNAs in cytoplasm and nucleus[J]. Gene, 2014,547(1):1⁃9. doi: 10.1016/j.gene.2014.06.043. |
[15] | Liu X, Lv R, Zhang L, et al. Long noncoding RNA expression profile of infantile hemangioma identified by microarray analysis[J/OL]. Tumour Biol, 2016. doi: 10.1007/s13277⁃016⁃5434⁃y. |
[16] | Yang K, Zhang X, Chen L, et al. Microarray expression profile of mRNAs and long noncoding RNAs and the potential role of PFK⁃1 in infantile hemangioma[J]. Cell Div, 2021,16(1):1. doi: 10.1186/s13008⁃020⁃00069⁃y. |
[17] | Amodio N, Raimondi L, Juli G, et al. MALAT1: a druggable long non⁃coding RNA for targeted anti⁃cancer approaches[J]. J Hematol Oncol, 2018,11(1):63. doi: 10.1186/s13045⁃018⁃0606⁃4. |
[18] | Wang S, Ren L, Shen G, et al. The knockdown of MALAT1 inhibits the proliferation, invasion and migration of hemangioma endothelial cells by regulating miR⁃206/VEGFA axis[J]. Mol Cell Probes, 2020,51:101540. doi: 10.1016/j.mcp.2020.101540. |
[19] | Li MM, Dong CX, Sun B, et al. LncRNA⁃MALAT1 promotes tumorogenesis of infantile hemangioma by competitively binding miR⁃424 to stimulate MEKK3/NF⁃κB pathway[J]. Life Sci, 2019,239:116946. doi: 10.1016/j.lfs.2019.116946. |
[20] | Klec C, Prinz F, Pichler M. Involvement of the long noncoding RNA NEAT1 in carcinogenesis[J]. Mol Oncol, 2019,13(1):46⁃60. doi: 10.1002/1878⁃0261.12404. |
[21] | Yu L, Shu H, Xing L, et al. Silencing long non⁃coding RNA NEAT1 suppresses the tumorigenesis of infantile hemangioma by competitively binding miR⁃33a⁃5p to stimulate HIF1α/NF⁃κB pathway[J]. Mol Med Rep, 2020,22(4):3358⁃3366. doi: 10.3892/mmr.2020.11409. |
[22] | Yu X, Liu X, Wang R, et al. Long non⁃coding RNA NEAT1 promotes the progression of hemangioma via the miR⁃361⁃5p/VEGFA pathway[J]. Biochem Biophys Res Commun, 2019,512(4):825⁃831. doi: 10.1016/j.bbrc.2019.03.084. |
[23] | Ghafouri⁃Fard S, Taheri M. Maternally expressed gene 3 (MEG3): a tumor suppressor long non coding RNA[J]. Biomed Pharmacother, 2019,118:109129. doi: 10.1016/j.biopha.2019.10 9129. |
[24] | Dai Y, Wan Y, Qiu M, et al. lncRNA MEG3 suppresses the tumorigenesis of hemangioma by sponging miR⁃494 and regulating PTEN/ PI3K/AKT pathway[J]. Cell Physiol Biochem, 2018,51(6):2872⁃2886. doi: 10.1159/000496040. |
[25] | Yao TH, Pataer P, Regmi KP, et al. Propranolol induces hemangioma endothelial cell apoptosis via a p53⁃BAX mediated pathway[J]. Mol Med Rep, 2018,18(1):684⁃694. doi: 10.3892/mmr.2018.9013. |
[26] | Yu Y, Yang J, Li Q, et al. LINC00152: a pivotal oncogenic long non⁃coding RNA in human cancers[J]. Cell Prolif, 2017,50(4):e12349. doi: 10.1111/cpr.12349. |
[27] | Wang SJ, Li YJ, Gao B, et al. Long non⁃coding RNA 00152 slicing represses the growth and aggressiveness of hemangioma cell by modulating miR⁃139⁃5p[J]. Biomed Pharmacother, 2019,120:109385. doi: 10.1016/j.biopha.2019.109385. |
[28] | Wang Y, Li M, Dong C, et al. Linc00152 knockdown inactivates the Akt/mTOR and Notch1 pathways to exert its anti⁃hemangioma effect[J]. Life Sci, 2019,223:22⁃28. doi: 10.1016/j.lfs.2019.03. 006. |
[29] | Li J, Li Q, Chen L, et al. Competitive endogenous RNA networks: integrated analysis of non⁃coding RNA and mRNA expression profiles in infantile hemangioma[J]. Oncotarget, 2018,9(15):11948⁃11963. doi: 10.18632/oncotarget.23946. |
[30] | Zhang J, Zhang C. Silence of long non⁃coding RNA UCA1 inhibits hemangioma cells growth, migration and invasion by up⁃regulation of miR⁃200c[J]. Life Sci, 2019,226:33⁃46. doi: 10. 1016/j.lfs.2019.03.038. |
[31] | Ma Q, Dai X, Lu W, et al. Silencing long non⁃coding RNA MEG8 inhibits the proliferation and induces the ferroptosis of hemangioma endothelial cells by regulating miR⁃497⁃5p/NOTCH2 axis[J]. Biochem Biophys Res Commun, 2021,556:72⁃78. doi: 10.1016/j.bbrc.2021.03.132. |
[32] | Liu Z, Kang Z, Dai Y, et al. Long noncoding RNA LINC00342 promotes growth of infantile hemangioma by sponging miR⁃3619⁃5p from HDGF[J]. Am J Physiol Heart Circ Physiol, 2019,317(4):H830⁃H839. doi: 10.1152/ajpheart.00188.2019. |
[33] | Zhang J, Zhao T, Tian L, et al. LncRNA OIP5⁃AS1 promotes the proliferation of hemangioma vascular endothelial cells via regulating miR⁃195⁃5p/NOB1 Axis[J]. Front Pharmacol, 2019,10:449. doi: 10.3389/fphar.2019.00449. |
[34] | Zhao T, Zhang J, Ye C, et al. lncRNA FOXD2⁃AS1 promotes hemangioma progression through the miR⁃324⁃3p/PDRG1 pathway[J]. Cancer Cell Int, 2020,20:189. doi: 10.1186/s12935⁃020⁃01277⁃w. |
[1] | Qin Bei, Li Qinfeng. Blueberry muffin baby: advances in the etiology [J]. Chinese Journal of Dermatology, 2025, 0(3): 20220411-e20220411. |
[2] | Chen Qitao, Li Yuqian, Shao Guanghui, Zhu Jing, Zhu Qilin, Li Zhongming, Du Xufeng, Fan Weixin. Erosive pustular dermatosis of the scalp [J]. Chinese Journal of Dermatology, 2025, 58(3): 272-275. |
[3] | Jiang Jiayi, Wang Daguang. Pathogenesis of nail damages secondary to systemic diseases [J]. Chinese Journal of Dermatology, 2025, 58(3): 282-285. |
[4] | Gong Xue, Yang Kaiying, Qiu Tong, Xiang Shanshan, Zhou Jiangyuan, Ji Yi. Effect of transforming growth factor beta 1 on the proliferation, migration and endothelial-to-mesenchymal transition of infantile hemangioma-derived endothelial cells [J]. Chinese Journal of Dermatology, 2025, 58(2): 138-144. |
[5] | Wang Di, Zhang Ruijun, Kang Yuying. Pathogenesis and treatment of seborrheic dermatitis [J]. Chinese Journal of Dermatology, 2025, 58(1): 89-92. |
[6] | Chen Haotian, Liu Lian, Zhang Ting, Liu Qingfeng, Li Xiaoxue, Diao Ping, Jiang Xian. Port-wine stains: mechanisms underlying the development and progression [J]. Chinese Journal of Dermatology, 2024, 57(7): 661-664. |
[7] | Yang Kaiying, Tian Bowen, Lan Chaoting. Untargeted metabolomics analysis-based metabolic characterization of hemangioma-derived endothelial cells [J]. Chinese Journal of Dermatology, 2024, 57(7): 601-609. |
[8] | Jiang Xian, Liu Lian, Zhang Ting. Treatment of port-wine stains: current status and prospects [J]. Chinese Journal of Dermatology, 2024, 57(7): 590-594. |
[9] | Feng Mengdi, Wang Wenqing. Regulatory roles of transcription factors and receptors in the pathogenesis of acne [J]. Chinese Journal of Dermatology, 2024, 57(6): 575-578. |
[10] | Yan Rufan, Liao Jieyue, Guo Ziyu, Yao Nan, Zhou Wenyu, Luo Shuaihantian, Zhang Guiying, Zhao Ming. Pathogenesis and targeted therapy of pemphigus [J]. Chinese Journal of Dermatology, 2024, 57(4): 374-378. |
[11] | Ju Qiang, Li Jiaqi. Acne vulgaris revisited: from pathogenesis to treatment strategies [J]. Chinese Journal of Dermatology, 2024, 57(4): 289-294. |
[12] | Zong Yangyongyi, Ma Chujun, Su Zhonglan. Eczematization following the treatment of psoriasis with biological agents: pathogenesis and management [J]. Chinese Journal of Dermatology, 2024, 0(3): 20220578-e20220578. |
[13] | Liu Tingwei, Meng Xiaoqi, Gu Duoduo, Pan Ruoxin, Zhang Yue, Xu Yang. Advances in the pathogenesis of rosacea [J]. Chinese Journal of Dermatology, 2024, 57(2): 186-190. |
[14] | Yan Na, Chen Ting, Geng Songmei, Li Zhengxiao, Liu Yan, Ma Yingxin, Tan Xuanfeng. Application of subcutaneous asymmetric tension reduction combined with dermal buried angular mattress suture in surgical treatment of benign pigmented facial lesions in infants and young children [J]. Chinese Journal of Dermatology, 2024, 57(1): 54-57. |
[15] | Song Zhiqiang, Chen Qiquan, Ge Lan. Insights into the progress in targeted therapy of atopic dermatitis from the perspective of its pathogenesis [J]. Chinese Journal of Dermatology, 2023, 56(8): 718-723. |
|