Chinese Journal of Dermatology ›› 2021, Vol. 54 ›› Issue (2): 178-182.doi: 10.35541/cjd.20190864
• Reviews • Previous Articles Next Articles
Ye Ruixian, Xue Rujun, Liang Jingyao, Liu Huanyan, Xiong Qiying, Dong Liangjiao, Zhang Xibao
Received:
2019-08-29
Revised:
2020-02-05
Online:
2021-02-15
Published:
2021-01-29
Contact:
Zhang Xibao
E-mail:zxibao@126.com
Supported by:
Ye Ruixian, Xue Rujun, Liang Jingyao, Liu Huanyan, Xiong Qiying, Dong Liangjiao, Zhang Xibao. Role of microRNAs in inflammatory skin diseases[J]. Chinese Journal of Dermatology, 2021, 54(2): 178-182.doi:10.35541/cjd.20190864
[1] | Deng X, Su Y, Wu H, et al. The role of microRNAs in autoimmune diseases with skin involvement[J]. Scand J Immunol, 2015,81(3):153⁃165. doi: 10.1111/sji.12261. |
[2] | Mannucci C, Casciaro M, Minciullo PL, et al. Involvement of microRNAs in skin disorders: a literature review[J]. Allergy Asthma Proc, 2017,38(1):9⁃15. doi: 10.2500/aap.2017.38.4013. |
[3] | Singhvi G, Manchanda P, Krishna Rapalli V, et al. MicroRNAs as biological regulators in skin disorders[J]. Biomed Pharmacother, 2018,108:996⁃1004. doi: 10.1016/j.biopha.2018. 09.090. |
[4] | Chen JQ, Papp G, Szodoray P, et al. The role of microRNAs in the pathogenesis of autoimmune diseases[J]. Autoimmun Rev, 2016,15(12):1171⁃1180. doi: 10.1016/j.autrev.2016.09.003. |
[5] | Yi R, O′Carroll D, Pasolli HA, et al. Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs[J]. Nat Genet, 2006,38(3):356⁃362. doi: 10.1038/ng1744. |
[6] | Andl T, Murchison EP, Liu F, et al. The miRNA⁃processing enzyme dicer is essential for the morphogenesis and maintenance of hair follicles[J]. Curr Biol, 2006,16(10):1041⁃1049. doi: 10.1016/j.cub.2006.04.005. |
[7] | Jackson SJ, Zhang Z, Feng D, et al. Rapid and widespread suppression of self⁃renewal by microRNA⁃203 during epidermal differentiation[J]. Development, 2013,140(9):1882⁃1891. doi: 10.1242/dev.089649. |
[8] | Wei T, Orfanidis K, Xu N, et al. The expression of microRNA⁃203 during human skin morphogenesis[J]. Exp Dermatol, 2010,19(9):854⁃856. doi: 10.1111/j.1600⁃0625.2010.01118.x. |
[9] | Løvendorf MB, Skov L. miRNAs in inflammatory skin diseases and their clinical implications[J]. Expert Rev Clin Immunol, 2015,11(4):467⁃477. doi: 10.1586/1744666X.2015.1020301. |
[10] | Timis TL, Orasan RI. Understanding psoriasis: role of miRNAs[J]. Biomed Rep, 2018,9(5):367⁃374. doi: 10.3892/br.2018. 1146. |
[11] | Wang MJ, Xu YY, Huang RY, et al. Role of an imbalanced miRNAs axis in pathogenesis of psoriasis: novel perspectives based on review of the literature[J]. Oncotarget, 2017,8(3):5498⁃5507. doi: 10.18632/oncotarget.12534. |
[12] | Xu Y, Ji Y, Lan X, et al. miR⁃203 contributes to IL⁃17⁃induced VEGF secretion by targeting SOCS3 in keratinocytes[J]. Mol Med Rep, 2017,16(6):8989⁃8996. doi: 10.3892/mmr.2017.7759. |
[13] | Xu N, Meisgen F, Butler LM, et al. MicroRNA⁃31 is overexpressed in psoriasis and modulates inflammatory cytokine and chemokine production in keratinocytes via targeting serine/threonine kinase 40[J]. J Immunol, 2013,190(2):678⁃688. doi: 10.4049/jimmunol.1202695. |
[14] | Xu N, Brodin P, Wei T, et al. MiR⁃125b, a microRNA downregulated in psoriasis, modulates keratinocyte proliferation by targeting FGFR2[J]. J Invest Dermatol, 2011,131(7):1521⁃1529. doi: 10.1038/jid.2011.55. |
[15] | Meisgen F, Xu N, Wei T, et al. MiR⁃21 is up⁃regulated in psoriasis and suppresses T cell apoptosis[J]. Exp Dermatol, 2012,21(4):312⁃314. doi: 10.1111/j.1600⁃0625.2012.01462.x. |
[16] | Guinea⁃Viniegra J, Jiménez M, Schonthaler HB, et al. Targeting miR⁃21 to treat psoriasis[J]. Sci Transl Med, 2014,6(225):225re1. doi: 10.1126/scitranslmed.3008089. |
[17] | Masalha M, Sidi Y, Avni D. The contribution of feedback loops between miRNAs, cytokines and growth factors to the pathogenesis of psoriasis[J]. Exp Dermatol, 2018,27(6):603⁃610. doi: 10.1111/exd.13520. |
[18] | 邓蕙妍, 林玲, 周欣, 等. 寻常型银屑病患者皮损miR⁃146a的表达及意义[J]. 中国中西医结合皮肤性病学杂志, 2016,15(3):142⁃144. doi: 10.3969/j.issn.1672⁃0709.2016.03.004. |
[19] | Park H, Huang X, Lu C, et al. MicroRNA⁃146a and microRNA⁃146b regulate human dendritic cell apoptosis and cytokine production by targeting TRAF6 and IRAK1 proteins[J]. J Biol Chem, 2015,290(5):2831⁃2841. doi: 10.1074/jbc.M114.591420. |
[20] | Xia P, Fang X, Zhang ZH, et al. Dysregulation of miRNA146a versus IRAK1 induces IL⁃17 persistence in the psoriatic skin lesions[J]. Immunol Lett, 2012,148(2):151⁃162. doi: 10.1016/j.imlet.2012.09.004. |
[21] | Sonkoly E, Janson P, Majuri ML, et al. MiR⁃155 is overexpressed in patients with atopic dermatitis and modulates T⁃cell proliferative responses by targeting cytotoxic T lymphocyte⁃associated antigen 4[J]. J Allergy Clin Immunol, 2010,126(3):581⁃589.e1⁃20. doi: 10.1016/j.jaci.2010.05.045. |
[22] | Ma L, Xue HB, Wang F, et al. MicroRNA⁃155 may be involved in the pathogenesis of atopic dermatitis by modulating the differentiation and function of T helper type 17 (Th17) cells[J]. Clin Exp Immunol, 2015,181(1):142⁃149. doi: 10.1111/cei.12624. |
[23] | Rebane A, Runnel T, Aab A, et al. MicroRNA⁃146a alleviates chronic skin inflammation in atopic dermatitis through suppression of innate immune responses in keratinocytes[J]. J Allergy Clin Immunol, 2014,134(4):836⁃847.e11. doi: 10.1016/j.jaci.2014.05.022. |
[24] | Yang Z, Zeng B, Wang C, et al. MicroRNA⁃124 alleviates chronic skin inflammation in atopic eczema via suppressing innate immune responses in keratinocytes[J]. Cell Immunol, 2017,319:53⁃60. doi: 10.1016/j.cellimm.2017.08.003. |
[25] | Vennegaard MT, Bonefeld CM, Hagedorn PH, et al. Allergic contact dermatitis induces upregulation of identical microRNAs in humans and mice[J]. Contact Dermatitis, 2012,67(5):298⁃305. doi: 10.1111/j.1600⁃0536.2012.02083.x. |
[26] | Gulati N, Løvendorf MB, Zibert JR, et al. Unique microRNAs appear at different times during the course of a delayed⁃type hypersensitivity reaction in human skin[J]. Exp Dermatol, 2015,24(12):953⁃957. doi: 10.1111/exd.12813. |
[27] | Pivarcsi A, Meisgen F, Xu N, et al. Changes in the level of serum microRNAs in patients with psoriasis after antitumour necrosis factor⁃α therapy[J]. Br J Dermatol, 2013,169(3):563⁃570. doi: 10.1111/bjd.12381. |
[28] | Løvendorf MB, Mitsui H, Zibert JR, et al. Laser capture microdissection followed by next⁃generation sequencing identifies disease⁃related microRNAs in psoriatic skin that reflect systemic microRNA changes in psoriasis[J]. Exp Dermatol, 2015,24(3):187⁃193. doi: 10.1111/exd.12604. |
[29] | Qu B, Cao J, Zhang F, et al. Type I interferon inhibition of microRNA⁃146a maturation through up⁃regulation of monocyte chemotactic protein⁃induced protein 1 in systemic lupus erythematosus[J]. Arthritis Rheumatol, 2015,67(12):3209⁃3218. doi: 10.1002/art.39398. |
[30] | Tang Y, Luo X, Cui H, et al. MicroRNA⁃146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins[J]. Arthritis Rheum, 2009,60(4):1065⁃1075. doi: 10.1002/art.24436. |
[31] | 杜明, 陶李, 王昱斌, 等. SLE患者外周血单个核细胞中miR⁃148b、miR⁃152和靶基因dnmt1的表达及其临床意义[J]. 免疫学杂志, 2018,34(11):966⁃971+983. |
[32] | Lashine YA, Salah S, Aboelenein HR, et al. Correcting the expression of miRNA⁃155 represses PP2Ac and enhances the release of IL⁃2 in PBMCs of juvenile SLE patients[J]. Lupus, 2015,24(3):240⁃247. doi: 10.1177/0961203314552117. |
[33] | Mizui M, Tsokos GC. Low⁃dose IL⁃2 in the treatment of lupus[J]. Curr Rheumatol Rep, 2016,18(11):68. doi: 10.1007/s11926⁃016⁃0617⁃5. |
[34] | Inoue K, Jinnin M, Yamane K, et al. Down⁃regulation of miR⁃223 contributes to the formation of Gottron′s papules in dermatomyositis via the induction of PKCɛ[J]. Eur J Dermatol, 2013,23(2):160⁃167. doi: 10.1684/ejd.2013.1959. |
[35] | Hirai T, Ikeda K, Tsushima H, et al. Circulating plasma microRNA profiling in patients with polymyositis/dermatomyositis before and after treatment: miRNA may be associated with polymyositis/dermatomyositis[J]. Inflamm Regen, 2018,38:1. doi: 10.1186/s41232⁃017⁃0058⁃1. |
[1] | Hu Mengyao, Li Min, Chen Sihan, Wei Xuecui, Chen Yujie, Xu Song, Chen Xu, . Different regulatory effects of S100A8/A9 expressed by keratinocytes in three common inflammatory skin injury modes [J]. Chinese Journal of Dermatology, 2024, 57(5): 435-444. |
[2] | Hong Yongzhen, Wang Qian, Liang Junqin, . Application of next-generation sequencing in the field of non-hereditary dermatoses [J]. Chinese Journal of Dermatology, 2024, 0(3): 20220436-e20220436. |
[3] | Wang Chen, Xue Chenhong, Song Jinghui, Li Jianguo, Li Zhenlu, Zhang Shoumin, Li Ming, Wang Jianbo. Adalimumab for the treatment of three cases of Blau syndrome in a pedigree [J]. Chinese Journal of Dermatology, 2024, 0(2): 20220239-e20220239. |
[4] | Wei Ziyu, Yang Yong. Role of ion channels in the pathogenesis of rosacea [J]. Chinese Journal of Dermatology, 2024, 57(2): 174-177. |
[5] | Guo Lei, Cao Chunyan, Fang Xiaoya, Feng Suying. Analysis of current status and risk factors of multidrug-resistant bacteria wound infections in patients with autoimmune bullous diseases [J]. Chinese Journal of Dermatology, 2024, 57(2): 155-160. |
[6] | Chen Chunli, Yan Siyu, Wang Dan, Gao Lihua, Tan Lina, Tang Siyuan, Liu Wei, Zeng Jinrong, Lu Jianyun, . Efficacy of acidified aliphatic ester in the treatment of atopic dermatitis in mouse models and preliminary exploration of its mechanisms of action [J]. Chinese Journal of Dermatology, 2023, 56(9): 822-831. |
[7] | Jing Ke, Wang Yuan, Li Suo, Feng Suying. Autoimmune subepidermal bullous diseases characterized by annular erythema and blisters: a retrospective analysis of 25 cases [J]. Chinese Journal of Dermatology, 2023, 56(9): 832-838. |
[8] | Chen Yaolong, Liu Hui, Yao Zhirong, Gao Xinghua. Strategies and suggestions for improving the quality of guidelines and consensus in the field of dermatology [J]. Chinese Journal of Dermatology, 2023, 56(9): 805-808. |
[9] | Sun Xiaojie, Liu Yi. Anti-androgen drugs in the treatment of skin diseases [J]. Chinese Journal of Dermatology, 2023, 56(9): 882-885. |
[10] | Tang Zhiming, Jing Mengqing, Lu Lu, Shan Xiao, Zhang Cuixia, Zhang Xiaoyu, Meng Sa. Effect of Xidi Liangxue recipe on the proliferation and apoptosis of HaCaT cells through the lncRNA NEAT1/miR-485-5p/STAT3 regulatory network [J]. Chinese Journal of Dermatology, 2023, 56(7): 642-650. |
[11] | Lian Panpan, Liu Jun, Su Zhonglan, Wang Hongwei. Effect of peroxisome proliferator-activated receptor γ on skin physiological and pathological processes [J]. Chinese Journal of Dermatology, 2023, 56(4): 365-368. |
[12] | Zhu Xue′e, Duan Manman, Ding Yuan. Long non-coding RNA-mediated competitive endogenous RNA regulatory network in keloids [J]. Chinese Journal of Dermatology, 2023, 0(2): 20210471-e20210471. |
[13] | Shen Yuqing, Song Xiuzu. Ultraviolet and androgenetic alopecia [J]. Chinese Journal of Dermatology, 2023, 0(2): 20210949-e20210949. |
[14] | Zhang Jiaqi, Wu Fan, Han Yuqing, Liu Qi, Pan Yao. Application of multi-photon microscopy in dermatology [J]. Chinese Journal of Dermatology, 2023, 0(2): 20230022-e20230022. |
[15] | Yang Xiaoli, Deng Danqi. Periodontitis and immune skin diseases [J]. Chinese Journal of Dermatology, 2023, 0(2): 20230059-e20230059. |
|