Chinese Journal of Dermatology ›› 2021, Vol. 54 ›› Issue (2): 174-178.doi: 10.35541/cjd.20190860
• Reviews • Previous Articles Next Articles
Liu Fengjie, Tu Ping, Wang Yang
Received:
2019-08-29
Revised:
2020-07-15
Online:
2021-02-15
Published:
2021-01-29
Contact:
Wang Yang
E-mail:yangwang_dr@bjmu.edu.cn
Liu Fengjie, Tu Ping, Wang Yang. Molecular genetic pathogenesis of mycosis fungoides[J]. Chinese Journal of Dermatology, 2021, 54(2): 174-178.doi:10.35541/cjd.20190860
[1] | Korgavkar K, Xiong M, Weinstock M. Changing incidence trends of cutaneous T⁃cell lymphoma[J]. JAMA Dermatol, 2013,149(11):1295⁃1299. doi: 10.1001/jamadermatol.2013.5526. |
[2] | Ghazawi FM, Netchiporouk E, Rahme E, et al. Comprehensive analysis of cutaneous T⁃cell lymphoma (CTCL) incidence and mortality in Canada reveals changing trends and geographic clustering for this malignancy[J]. Cancer, 2017,123(18):3550⁃3567. doi: 10.1002/cncr.30758. |
[3] | Hwang ST, Janik JE, Jaffe ES, et al. Mycosis fungoides and Sézary syndrome[J]. Lancet, 2008,371(9616):945⁃957. doi: 10. 1016/S0140⁃6736(08)60420⁃1. |
[4] | van Doorn R, van Kester MS, Dijkman R, et al. Oncogenomic analysis of mycosis fungoides reveals major differences with Sezary syndrome[J]. Blood, 2009,113(1):127⁃136. doi: 10.1182/ blood⁃2008⁃04⁃153031. |
[5] | Scarisbrick JJ, Woolford AJ, Russell⁃Jones R, et al. Loss of heterozygosity on 10q and microsatellite instability in advanced stages of primary cutaneous T⁃cell lymphoma and possible association with homozygous deletion of PTEN[J]. Blood, 2000,95(9):2937⁃2942. |
[6] | Scarisbrick JJ, Woolford AJ, Russell⁃Jones R, et al. Allelotyping in mycosis fungoides and Sézary syndrome: common regions of allelic loss identified on 9p, 10q, and 17p[J]. J Invest Dermatol, 2001,117(3):663⁃670. doi: 10.1046/j.0022⁃202x.2001.01460.x. |
[7] | Mao X, Lillington D, Scarisbrick JJ, et al. Molecular cytogenetic analysis of cutaneous T⁃cell lymphomas: identification of common genetic alterations in Sézary syndrome and mycosis fungoides[J]. Br J Dermatol, 2002,147(3):464⁃475. doi: 10.1046/ j.1365⁃2133.2002.04966.x. |
[8] | Scarisbrick JJ, Woolford AJ, Calonje E, et al. Frequent abnormalities of the p15 and p16 genes in mycosis fungoides and sezary syndrome[J]. J Invest Dermatol, 2002,118(3):493⁃499. doi: 10.1046/j.0022⁃202x.2001.01682.x. |
[9] | Fischer TC, Gellrich S, Muche JM, et al. Genomic aberrations and survival in cutaneous T cell lymphomas[J]. J Invest Dermatol, 2004,122(3):579⁃586. doi: 10.1111/j.0022⁃202X.2004.22301.x. |
[10] | Prochazkova M, Chevret E, Mainhaguiet G, et al. Common chromosomal abnormalities in mycosis fungoides transformation[J]. Genes Chromosomes Cancer, 2007,46(9):828⁃838. doi: 10. 1002/gcc.20469. |
[11] | Salgado R, Servitje O, Gallardo F, et al. Oligonucleotide array⁃CGH identifies genomic subgroups and prognostic markers for tumor stage mycosis fungoides[J]. J Invest Dermatol, 2010,130(4):1126⁃1135. doi: 10.1038/jid.2009.306. |
[12] | Laharanne E, Oumouhou N, Bonnet F, et al. Genome⁃wide analysis of cutaneous T⁃cell lymphomas identifies three clinically relevant classes[J]. J Invest Dermatol, 2010,130(6):1707⁃1718. doi: 10.1038/jid.2010.8. |
[13] | Woollard WJ, Kalaivani NP, Jones CL, et al. Independent loss of methylthioadenosine phosphorylase (MTAP) in primary cutaneous T⁃cell lymphoma[J]. J Invest Dermatol, 2016,136(6):1238⁃1246. doi: 10.1016/j.jid.2016.01.028. |
[14] | Park J, Yang J, Wenzel AT, et al. Genomic analysis of 220 CTCLs identifies a novel recurrent gain⁃of⁃function alteration in RLTPR (p.Q575E)[J]. Blood, 2017,130(12):1430⁃1440. doi: 10.1182/blood⁃2017⁃02⁃768234. |
[15] | Bastidas Torres AN, Najidh S, Tensen CP, et al. Molecular advances in cutaneous T⁃cell lymphoma[J]. Semin Cutan Med Surg, 2018,37(1):81⁃86. doi: 10.12788/j.sder.2018.007. |
[16] | Ungewickell A, Bhaduri A, Rios E, et al. Genomic analysis of mycosis fungoides and Sézary syndrome identifies recurrent alterations in TNFR2[J]. Nat Genet, 2015,47(9):1056⁃1060. doi: 10.1038/ng.3370. |
[17] | McGregor JM, Crook T, Fraser⁃Andrews EA, et al. Spectrum of p53 gene mutations suggests a possible role for ultraviolet radiation in the pathogenesis of advanced cutaneous lymphomas[J]. J Invest Dermatol, 1999,112(3):317⁃321. doi: 10.1046/j. 1523⁃1747.1999.00507.x. |
[18] | McGirt LY, Jia P, Baerenwald DA, et al. Whole⁃genome sequencing reveals oncogenic mutations in mycosis fungoides[J]. Blood, 2015,126(4):508⁃519. doi: 10.1182/blood⁃2014⁃11⁃611194. |
[19] | Dereure O, Levi E, Vonderheid EC, et al. Infrequent Fas mutations but no Bax or p53 mutations in early mycosis fungoides: a possible mechanism for the accumulation of malignant T lymphocytes in the skin[J]. J Invest Dermatol, 2002,118(6):949⁃956. doi: 10.1046/j.1523⁃1747.2002.01794.x. |
[20] | Nagasawa T, Takakuwa T, Takayama H, et al. Fas gene mutations in mycosis fungoides: analysis of laser capture⁃microdissected specimens from cutaneous lesions[J]. Oncology, 2004,67(2):130⁃134. doi: 10.1159/000080999. |
[21] | Vaqué JP, Gómez⁃López G, Monsálvez V, et al. PLCG1 mutations in cutaneous T⁃cell lymphomas[J]. Blood, 2014,123(13):2034⁃2043. doi: 10.1182/blood⁃2013⁃05⁃504308. |
[22] | Caumont C, Gros A, Boucher C, et al. PLCG1 gene mutations are uncommon in cutaneous T⁃cell lymphomas[J]. J Invest Dermatol, 2015,135(9):2334⁃2337. doi: 10.1038/jid.2015.161. |
[23] | Tensen CP. PLCG1 gene mutations in cutaneous T⁃cell lymphomas revisited[J]. J Invest Dermatol, 2015,135(9):2153⁃2154. doi: 10.1038/jid.2015.221. |
[24] | da Silva Almeida AC, Abate F, Khiabanian H, et al. The mutational landscape of cutaneous T cell lymphoma and Sézary syndrome[J]. Nat Genet, 2015,47(12):1465⁃1470. doi: 10.1038/ng.3442. |
[25] | Chang LW, Patrone CC, Yang W, et al. An integrated data resource for genomic analysis of cutaneous T⁃cell lymphoma[J]. J Invest Dermatol, 2018,138(12):2681⁃2683. doi: 10.1016/j.jid.2018.06.176. |
[26] | Krummel MF, Allison JP. CD28 and CTLA⁃4 have opposing effects on the response of T cells to stimulation[J]. J Exp Med, 1995,182(2):459⁃465. doi: 10.1084/jem.182.2.459. |
[27] | Wang L, Ni X, Covington KR, et al. Genomic profiling of Sézary syndrome identifies alterations of key T cell signaling and differentiation genes[J]. Nat Genet, 2015,47(12):1426⁃1434. doi: 10.1038/ng.3444. |
[28] | Sekulic A, Liang WS, Tembe W, et al. Personalized treatment of Sézary syndrome by targeting a novel CTLA4:CD28 fusion[J]. Mol Genet Genomic Med, 2015,3(2):130⁃136. doi: 10.1002/mgg3.121. |
[29] | Bastidas Torres AN, Cats D, Mei H, et al. Genomic analysis reveals recurrent deletion of JAK⁃STAT signaling inhibitors HNRNPK and SOCS1 in mycosis fungoides[J]. Genes Chromosomes Cancer, 2018,57(12):653⁃664. doi: 10.1002/gcc. 22679. |
[30] | Pulitzer M, Myskowski PL, Horwitz SM, et al. Mycosis fungoides with large cell transformation: clinicopathological features and prognostic factors[J]. Pathology, 2014,46(7):610⁃616. doi: 10. 1097/PAT.0000000000000166. |
[31] | Herrmann JL, Hughey LC. Recognizing large⁃cell transformation of mycosis fungoides[J]. J Am Acad Dermatol, 2012,67(4):665⁃672. doi: 10.1016/j.jaad.2011.12.011. |
[32] | Agar NS, Wedgeworth E, Crichton S, et al. Survival outcomes and prognostic factors in mycosis fungoides/Sézary syndrome: validation of the revised International Society for Cutaneous Lymphomas/European Organisation for Research and Treatment of Cancer staging proposal[J]. J Clin Oncol, 2010,28(31):4730⁃4739. doi: 10.1200/JCO.2009.27.7665. |
[33] | Raghavan SS, Hong EK, Kim YH, et al. Utility of CD30, Ki⁃67, and p53 in assisting with the diagnosis of mycosis fungoides with large cell transformation[J]. J Cutan Pathol, 2019,46(1):33⁃43. doi: 10.1111/cup.13375. |
[34] | Pérez C, Mondéjar R, García⁃Díaz N, et al. Advanced⁃stage mycosis fungoides: role of the signal transducer and activator of transcription 3, nuclear factor⁃κB and nuclear factor of activated T cells pathways[J]. Br J Dermatol, 2020,182(1):147⁃155. doi: 10.1111/bjd.18098. |
[35] | Wang S, Li N, Heald P, et al. Flow cytometric DNA ploidy analysis of peripheral blood from patients with sezary syndrome: detection of aneuploid neoplastic T cells in the blood is associated with large cell transformation in tissue[J]. Am J Clin Pathol, 2004,122(5):774⁃782. doi: 10.1309/8B84⁃9FC6⁃PHAP⁃8FDD. |
[36] | Prochazkova M, Chevret E, Beylot⁃Barry M, et al. Large cell transformation of mycosis fungoides: tetraploidization within skin tumor large cells[J]. Cancer Genet Cytogenet, 2005,163(1):1⁃6. doi: 10.1016/j.cancergencyto.2005.03.013. |
[37] | Laharanne E, Chevret E, Idrissi Y, et al. CDKN2A⁃CDKN2B deletion defines an aggressive subset of cutaneous T⁃cell lymphoma[J]. Mod Pathol, 2010,23(4):547⁃558. doi: 10.1038/modpathol.2009.196. |
[38] | Nicolae⁃Cristea AR, Benner MF, Zoutman WH, et al. Diagnostic and prognostic significance of CDKN2A/CDKN2B deletions in patients with transformed mycosis fungoides and primary cutaneous CD30⁃positive lymphoproliferative disease[J]. Br J Dermatol, 2015,172(3):784⁃788. doi: 10.1111/bjd.13476. |
[39] | Sun J, Yi S, Qiu L, et al. SATB1 defines a subtype of cutaneous CD30+ lymphoproliferative disorders associated with a T⁃helper 17 cytokine profile[J]. J Invest Dermatol, 2018,138(8):1795⁃1804. doi: 10.1016/j.jid.2018.02.028. |
[40] | Garaicoa FH, Roisman A, Arias M, et al. Genomic imbalances and microRNA transcriptional profiles in patients with mycosis fungoides[J]. Tumour Biol, 2016,37(10):13637⁃13647. doi: 10. 1007/s13277⁃016⁃5259⁃8. |
[41] | Qiu L, Liu F, Yi S, et al. Loss of 5⁃hydroxymethylcytosine is an epigenetic biomarker in cutaneous T⁃cell lymphoma[J]. J Invest Dermatol, 2018,138(11):2388⁃2397. doi: 10.1016/j.jid.2018.05. 007. |
[42] | Yi S, Sun J, Qiu L, et al. Dual role of EZH2 in cutaneous anaplastic large cell lymphoma: promoting tumor cell survival and regulating tumor microenvironment[J]. J Invest Dermatol, 2018,138(5):1126⁃1136. doi: 10.1016/j.jid.2017.10.036. |
[1] | Shao Yi, Wang Lei, Liu Fang. A comparative clinicopathologic analysis of mycosis fungoides with large cell transformation versus primary cutaneous anaplastic large cell lymphoma [J]. Chinese Journal of Dermatology, 2023, 56(9): 853-857. |
[2] | Writing Committee Expert Group on “Treatment of mycosis fungoides: a Chinese expert consensus ()”. Treatment of mycosis fungoides: a Chinese expert consensus (2023) [J]. Chinese Journal of Dermatology, 2023, 56(5): 402-409. |
[3] | Wang Jiaqi, Wang Ping, Li Liuyu, Fan Qimin, Zhu Mengyan, Wang Yanqing, Zhou Hongyu, Shen Hong, Xu Ai′e. Cutaneous hypopigmented lymphoproliferative disorders: a clinicopathological study of 41 cases [J]. Chinese Journal of Dermatology, 2022, 55(2): 110-115. |
[4] | Lin Yuchieh, Liu Fengjie, Gao Yumei, Liu Xiangjun, Xu Bufang, Li Yingyi, Lai Pan, Chen Zhuojing, Sun Jingru, Tu Ping, Wang Yang. Significance of lysophosphatidic acid receptor 6 in the large-cell transformation of mycosis fungoides and its effect on the proliferation and apoptosis of cutaneous T-cell lymphoma cells [J]. Chinese Journal of Dermatology, 2022, 55(2): 102-109. |
[5] | Dermatology Professional Committee of Chinese Research Hospital Society, China Dermatologist Association. Clinical application of ultraviolet A1 in dermatology: an expert consensus statement (2022) [J]. Chinese Journal of Dermatology, 2022, 55(11): 956-961. |
[6] | Pan Haihao, Li Yingyi, Qin Yao, Wen Yujie, Lai Pan, Xiong Shan, Cao Mengzhou, Sun Jingru, Tu Ping, Wang Yang. Correlations between pruritus and CC chemokine ligand 17 in patients with mycosis fungoides [J]. Chinese Journal of Dermatology, 2022, 55(11): 969-975. |
[7] | Tian Cuicui, Chen Hao. Pathogenesis of cutaneous T-cell lymphoma-related pruritus [J]. Chinese Journal of Dermatology, 2022, 0(1): 20210941-e20210941. |
[8] | Zhang Ying, Gan Lu, Li Siqi, Li Yan, Song Hao, Shao Xuebao, Zhang Wei, Xu Xiulian, Jiang Yiqun, Zeng Xuesi, Chen Hao, Sun Jianfang. Clinicopathological and immunophenotypic analysis of 24 cases of transformed mycosis fungoides [J]. Chinese Journal of Dermatology, 2022, 55(1): 20-26. |
[9] | Zhang Ying, Li Siqi, Gan Lu, Kong Yingqi, Li Yan, Chen Hao, Sun Jianfang. Role of flow cytometric analysis of peripheral blood in the diagnosis of lymphoma-associated erythroderma [J]. Chinese Journal of Dermatology, 2021, 54(9): 808-813. |
[10] | Li Fan, Wang Lin. Tumor immune microenvironment in cutaneous T-cell lymphoma [J]. Chinese Journal of Dermatology, 2020, 53(9): 754-759. |
[11] | Zhou Xuyue, Luan Chao, Chen Kun. Application of phototherapy in cutaneous T-cell lymphomas [J]. Chinese Journal of Dermatology, 2020, 53(9): 764-767. |
[12] | Zhu Mengyan, Yu Wenzhong, Wang Ping, Liu Jiao, Li Zhao, Dai Hui, Xu Ai′e. Performance of reflectance confocal microscopy in localization diagnosis of and monitoring of therapeutic efficacy in early-stage mycosis fungoides [J]. Chinese Journal of Dermatology, 2020, 53(8): 634-639. |
[13] | Qiao Gang, Lei Jiehao, Xu Ai′e. Clinicopathological analysis of nine cases of hypopigmented mycosis fungoides [J]. Chinese Journal of Dermatology, 2020, 53(4): 292-295. |
[14] | Gan Lu, Zhang Ying, Shi Haoze, Song Hao, Wang Yajie, Cheng Wei, Shao Xuebao, Ying Chengshuang, Chen Hao, Sun Jianfang. Expression of polycomb group proteins in common cutaneous T?cell lymphomas and lymphoproliferative disorders [J]. Chinese Journal of Dermatology, 2020, 53(11): 880-885. |
[15] | Zhang Xiaoyan, Wang Lin. Expression of TOX in mycosis fungoides and its diagnostic value [J]. Chinese Journal of Dermatology, 2020, 53(1): 13-16. |
|