Chinese Journal of Dermatology ›› 2020, Vol. 53 ›› Issue (9): 754-759.doi: 10.35541/cjd.20190312
• Reviews • Previous Articles Next Articles
Li Fan, Wang Lin
Received:
2019-02-18
Revised:
2019-12-16
Online:
2020-09-15
Published:
2020-08-31
Contact:
Wang Lin
E-mail:lkzwl@126.com
Supported by:
Li Fan, Wang Lin. Tumor immune microenvironment in cutaneous T-cell lymphoma[J]. Chinese Journal of Dermatology, 2020, 53(9): 754-759.doi:10.35541/cjd.20190312
[1] | Wilcox RA. Cutaneous T⁃cell lymphoma: 2016 update on diagnosis, risk⁃stratification, and management[J]. Am J Hematol, 2016,91(1):151⁃165. doi: 10.1002/ajh.24233. |
[2] | Hanel W, Briski R, Ross CW, et al. A retrospective comparative outcome analysis following systemic therapy in mycosis fungoides and Sézary syndrome[J]. Am J Hematol, 2016,91(12):E491⁃E495. doi: 10.1002/ajh.24564. |
[3] | Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression[J]. J Cell Biol, 2012,196(4):395⁃406. doi: 10.1083/jcb.201102147. |
[4] | Hsi AC, Lee SJ, Rosman IS, et al. Expression of helper T cell master regulators in inflammatory dermatoses and primary cutaneous T⁃cell lymphomas: diagnostic implications[J]. J Am Acad Dermatol, 2015,72(1):159⁃167. doi: 10.1016/j.jaad.2014.09. 022. |
[5] | Rubio⁃Gonzalez B, Zain J, Rosen ST, et al. Clinical manifestations and pathogenesis of cutaneous lymphomas: current status and future directions[J]. Br J Haematol, 2017,176(1):16⁃36. doi: 10.1111/bjh.14402. |
[6] | Oka T, Sugaya M, Takahashi N, et al. Increased interleukin⁃19 expression in cutaneous T⁃cell lymphoma and atopic dermatitis[J]. Acta Derm Venereol, 2017,97(10):1172⁃1177. doi: 10.2340/ 00015555⁃2723. |
[7] | Nakajima R, Miyagaki T, Hirakawa M, et al. Interleukin⁃25 is involved in cutaneous T⁃cell lymphoma progression by establishing a T helper 2⁃dominant microenvironment[J]. Br J Dermatol, 2018,178(6):1373⁃1382. doi: 10.1111/bjd.16237. |
[8] | Kabasawa M, Sugaya M, Oka T, et al. Decreased interleukin⁃21 expression in skin and blood in advanced mycosis fungoides[J]. J Dermatol, 2016,43(7):819⁃822. doi: 10.1111/1346⁃8138.13278. |
[9] | Kadin ME, Pavlov IY, Delgado JC, et al. High soluble CD30, CD25, and IL⁃6 may identify patients with worse survival in CD30+ cutaneous lymphomas and early mycosis fungoides[J]. J Invest Dermatol, 2012,132(3 Pt 1):703⁃710. doi: 10.1038/jid. 2011.351. |
[10] | Miyagaki T, Sugaya M, Suga H, et al. IL⁃22, but not IL⁃17, dominant environment in cutaneous T⁃cell lymphoma[J]. Clin Cancer Res, 2011,17(24):7529⁃7538. doi: 10.1158/1078⁃0432.CCR⁃11⁃1192. |
[11] | Wang J, Ke XY. The four types of Tregs in malignant lymphomas[J]. J Hematol Oncol, 2011,4:50. doi: 10.1186/1756⁃8722⁃4⁃50. |
[12] | Heid JB, Schmidt A, Oberle N, et al. FOXP3+CD25- tumor cells with regulatory function in Sézary syndrome[J]. J Invest Dermatol, 2009,129(12):2875⁃2885. doi: 10.1038/jid.2009.175. |
[13] | Shareef MM, Elgarhy LH, Rel⁃S W. Expression of granulysin and FOXP3 in cutaneous T cell lymphoma and Sézary syndrome[J]. Asian Pac J Cancer Prev, 2015,16(13):5359⁃5364. doi: 10.7314/apjcp.2015.16.13.5359. |
[14] | Kasper LH, Arnold DL, Coles A J, et al. Lymphocyte subset dynamics following alemtuzumab treatment in patients who relapsed on a prior therapy[J]. J Neuroimmunol, 2014,275(1): 63⁃64. doi:10.1016/j.jneuroim.2014.08.167. |
[15] | Havari E, Turner MJ, Campos⁃Rivera J, et al. Impact of alemtuzumab treatment on the survival and function of human regulatory T cells in vitro[J]. Immunology, 2014,141(1):123⁃131. doi: 10.1111/imm.12178. |
[16] | Watanabe R, Teague JE, Fisher DC, et al. Alemtuzumab therapy for leukemic cutaneous T⁃cell lymphoma: diffuse erythema as a positive predictor of complete remission[J]. JAMA Dermatol, 2014,150(7):776⁃779. doi: 10.1001/jamadermatol.2013.10099. |
[17] | Clark RA, Watanabe R, Teague JE, et al. Skin effector memory T cells do not recirculate and provide immune protection in alemtuzumab⁃treated CTCL patients[J]. Sci Transl Med, 2012,4(117):117ra7. doi: 10.1126/scitranslmed.3003008. |
[18] | Iliadis A, Koletsa T, Patsatsi A, et al. The cellular microenvironment and neoplastic population in mycosis fungoides skin lesions: a clinicopathological correlation[J]. Eur J Dermatol, 2016,26(6):566⁃571. doi: 10.1684/ejd.2016.2847. |
[19] | Carrillo⁃Bustamante P, Keşmir C, de Boer RJ. The evolution of natural killer cell receptors[J]. Immunogenetics, 2016,68(1):3⁃18. doi: 10.1007/s00251⁃015⁃0869⁃7. |
[20] | Schmitt C, Marie⁃Cardine A, Bensussan A. Therapeutic antibodies to KIR3DL2 and other target antigens on cutaneous T⁃cell lymphomas[J]. Front Immunol, 2017,8:1010. doi: 10.3389/fimmu. 2017.01010. |
[21] | Takahashi N, Sugaya M, Suga H, et al. Increased soluble CD226 in sera of patients with cutaneous T⁃cell lymphoma mediates cytotoxic activity against tumor cells via CD155[J]. J Invest Dermatol, 2017,137(8):1766⁃1773. doi: 10.1016/j.jid.2017.03. 025. |
[22] | Accart N, Urosevic⁃Maiwald M, Dummer R, et al. Lymphocytic infiltration in the cutaneous lymphoma microenvironment after injection of TG1042[J]. J Transl Med, 2013,11:226. doi: 10. 1186/1479⁃5876⁃11⁃226. |
[23] | Querfeld C, Rosen ST, Guitart J, et al. Results of an open⁃label multicenter phase 2 trial of lenalidomide monotherapy in refractory mycosis fungoides and Sézary syndrome[J]. Blood, 2014,123(8):1159⁃1166. doi: 10.1182/blood⁃2013⁃09⁃525915. |
[24] | Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumor microenvironment[J]. Science, 2015,348(6230):74⁃80. doi: 10.1126/science.aaa6204. |
[25] | Sugaya M, Miyagaki T, Ohmatsu H, et al. Association of the numbers of CD163(+) cells in lesional skin and serum levels of soluble CD163 with disease progression of cutaneous T cell lymphoma[J]. J Dermatol Sci, 2012,68(1):45⁃51. doi: 10.1016/j.jdermsci.2012.07.007. |
[26] | Kim YH, Tavallaee M, Sundram U, et al. Phase II investigator⁃initiated study of brentuximab vedotin in mycosis fungoides and Sézary syndrome with variable CD30 expression level: a multi⁃institution collaborative project[J]. J Clin Oncol, 2015,33(32):3750⁃3758. doi: 10.1200/JCO.2014.60.3969. |
[27] | De Souza A, Tinguely M, Burghart DR, et al. Characterization of the tumor microenvironment in primary cutaneous CD30⁃positive lymphoproliferative disorders: a predominance of CD163⁃positive M2 macrophages[J]. J Cutan Pathol, 2016,43(7):579⁃588. doi: 10.1111/cup.12719. |
[28] | Kakizaki A, Fujimura T, Kambayashi Y, et al. Comparison of CD163+ macrophages and CD206+ cells in lesional skin of CD30+ lymphoproliferative disorders of lymphomatoid papulosis and primary cutaneous anaplastic large⁃cell lymphoma[J]. Acta Derm Venereol, 2015,95(5):600⁃602. doi: 10.2340/0001 5555⁃2016. |
[29] | Litvinov IV, Netchiporouk E, Cordeiro B, et al. The use of transcriptional profiling to improve personalized diagnosis and management of cutaneous T⁃cell lymphoma (CTCL)[J]. Clin Cancer Res, 2015,21(12):2820⁃2829. doi: 10.1158/1078⁃0432.CCR⁃14⁃3322. |
[30] | Wu X, Schulte BC, Zhou Y, et al. Depletion of M2⁃like tumor⁃associated macrophages delays cutaneous T⁃cell lymphoma development in vivo[J]. J Invest Dermatol, 2014,134(11):2814⁃2822. doi: 10.1038/jid.2014.206. |
[31] | Furudate S, Fujimura T, Kakizaki A, et al. Tumor⁃associated M2 macrophages in mycosis fungoides acquire immunomodulatory function by interferon alpha and interferon gamma[J]. J Dermatol Sci, 2016,83(3):182⁃189. doi: 10.1016/j.jdermsci.2016. 05.004. |
[32] | Cannarile MA, Weisser M, Jacob W, et al. Colony⁃stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy[J]. J Immunother Cancer, 2017,5(1):53. doi: 10.1186/s40425⁃017⁃0257⁃y. |
[33] | Schlapbach C, Ochsenbein A, Kaelin U, et al. High numbers of DC⁃SIGN+ dendritic cells in lesional skin of cutaneous T⁃cell lymphoma[J]. J Am Acad Dermatol, 2010,62(6):995⁃1004. doi: 10.1016/j.jaad.2009.06.082. |
[34] | Zhang QA, Chen ZQ, Chen MH, e t al. The number of regular T cells and immature dendritic cells involved in mycosis fungoides is linked to the tumor stage[J]. Eur Rev Med Pharmacol Sci, 2014,18(4):553⁃558. |
[35] | Vieyra⁃Garcia P, Crouch JD, O′Malley JT, et al. Benign T cells drive clinical skin inflammation in cutaneous T cell lymphoma[J]. JCI Insight, 2019,4(1). pii: 124233. doi: 10.1172/jci.insight. 124233. |
[36] | Deckers J, Hammad H, Hoste E. Langerhans cells: sensing the environment in health and disease[J]. Front Immunol, 2018,9:93. doi: 10.3389/fimmu.2018.00093. |
[37] | Pileri A, Agostinelli C, Sessa M, et al. Langerhans, plasmacytoid dendritic and myeloid⁃derived suppressor cell levels in mycosis fungoides vary according to the stage of the disease[J]. Virchows Arch, 2017,470(5):575⁃582. doi: 10.1007/s00428⁃017⁃2107⁃1. |
[38] | Schwingshackl P, Obermoser G, Nguyen VA, et al. Distribution and maturation of skin dendritic cell subsets in two forms of cutaneous T⁃cell lymphoma: mycosis fungoides and Sézary syndrome[J]. Acta Derm Venereol, 2012,92(3):269⁃275. doi: 10.2340/00015555⁃1220. |
[39] | Müller P, Martin K, Theurich S, et al. Microtubule⁃depolymerizing agents used in antibody⁃drug conjugates induce antitumor immunity by stimulation of dendritic cells[J]. Cancer Immunol Res, 2014,2(8):741⁃755. doi: 10.1158/2326⁃6066.CIR⁃13⁃0198. |
[40] | Rook AH, Gelfand JM, Wysocka M, et al. Topical resiquimod can induce disease regression and enhance T⁃cell effector functions in cutaneous T⁃cell lymphoma[J]. Blood, 2015,126(12):1452⁃1461. doi: 10.1182/blood⁃2015⁃02⁃630335. |
[41] | Motallebnezhad M, Jadidi⁃Niaragh F, Qamsari ES, et al. The immunobiology of myeloid⁃derived suppressor cells in cancer[J]. Tumour Biol, 2016,37(2):1387⁃1406. doi: 10.1007/s13277⁃015⁃4. |
[42] | Geskin LJ, Akilov OE, Kwon S, et al. Therapeutic reduction of cell⁃mediated immunosuppression in mycosis fungoides and Sézary syndrome[J]. Cancer Immunol Immunother, 2018,67(3):423⁃434. doi: 10.1007/s00262⁃017⁃2090⁃z. |
[43] | Bronte V, Brandau S, Chen SH, et al. Recommendations for myeloid⁃derived suppressor cell nomenclature and characterization standards[J]. Nat Commun, 2016,7:12150. doi: 10.1038/ncomms12150. |
[44] | Yu J, Du W, Yan F, et al. Myeloid⁃derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer[J]. J Immunol, 2013,190(7):3783⁃3797. doi: 10.4049/jimmunol.1201449. |
[45] | Munn DH, Mellor AL. IDO in the tumor microenvironment: inflammation, counter⁃regulation, and tolerance[J]. Trends Immunol, 2016,37(3):193⁃207. doi: 10.1016/j.it.2016.01.002. |
[46] | Maliniemi P, Laukkanen K, Väkevä L, et al. Biological and clinical significance of tryptophan⁃catabolizing enzymes in cutaneous T⁃cell lymphomas[J]. Oncoimmunology, 2017,6(3):e1273310. doi: 10.1080/2162402X.2016.1273310. |
[47] | Zhang Y, Gallastegui N, Rosenblatt JD. Regulatory B cells in anti⁃tumor immunity[J]. Int Immunol, 2015,27(10):521⁃530. doi: 10.1093/intimm/dxv034. |
[48] | Sarvaria A, Madrigal JA, Saudemont A. B cell regulation in cancer and anti⁃tumor immunity[J]. Cell Mol Immunol, 2017,14(8):662⁃674. doi: 10.1038/cmi.2017.35. |
[49] | Theurich S, Schlaak M, Steguweit H, et al. Targeting tumor⁃infiltrating B cells in cutaneous T⁃cell lymphoma[J]. J Clin Oncol, 2016,34(12):e110⁃116. doi: 10.1200/JCO.2013.50.9471. |
[50] | Eder J, Rogojanu R, Jerney W, et al. Mast cells are abundant in primary cutaneous T⁃cell lymphomas: results from a computer⁃aided quantitative immunohistological study[J/OL]. PLoS One, 2016,11(11):e0163661. doi: 10.1371/journal.pone. 0163661. |
[51] | Miyagaki T, Sugaya M, Suga H, et al. Low herpesvirus entry mediator (HVEM) expression on dermal fibroblasts contributes to a Th2⁃dominant microenvironment in advanced cutaneous T⁃cell lymphoma[J]. J Invest Dermatol, 2012,132(4):1280⁃1289. doi: 10.1038/jid.2011.470. |
[52] | Takahashi N, Sugaya M, Suga H, et al. Thymic stromal chemokine TSLP acts through Th2 cytokine production to induce cutaneous T⁃cell lymphoma[J]. Cancer Res, 2016,76(21):6241⁃6252. doi: 10.1158/0008⁃5472.CAN⁃16⁃0992. |
[1] | Song Xiaoting, Liu Bo, Chen Yudi, Zhao Zuotao. Pathophysiological pathogenesis of rosacea [J]. Chinese Journal of Dermatology, 2022, 55(5): 446-449. |
[2] | Yu Su, Yu Tianze, Li Wei. Role of the autonomic nervous system in immune imbalance in atopic dermatitis [J]. Chinese Journal of Dermatology, 2022, 55(4): 362-365. |
[3] | Wang Jiaqi, Wang Ping, Li Liuyu, Fan Qimin, Zhu Mengyan, Wang Yanqing, Zhou Hongyu, Shen Hong, Xu Ai′e. Cutaneous hypopigmented lymphoproliferative disorders: a clinicopathological study of 41 cases [J]. Chinese Journal of Dermatology, 2022, 55(2): 110-115. |
[4] | Lin Yuchieh, Liu Fengjie, Gao Yumei, Liu Xiangjun, Xu Bufang, Li Yingyi, Lai Pan, Chen Zhuojing, Sun Jingru, Tu Ping, Wang Yang. Significance of lysophosphatidic acid receptor 6 in the large-cell transformation of mycosis fungoides and its effect on the proliferation and apoptosis of cutaneous T-cell lymphoma cells [J]. Chinese Journal of Dermatology, 2022, 55(2): 102-109. |
[5] | Dong Dong, Liu Tianyi. Cell metabolism and metastasis of cutaneous malignant melanoma [J]. Chinese Journal of Dermatology, 2022, 0(1): 20210023-e20210023. |
[6] | Zhang Ying, Gan Lu, Li Siqi, Li Yan, Song Hao, Shao Xuebao, Zhang Wei, Xu Xiulian, Jiang Yiqun, Zeng Xuesi, Chen Hao, Sun Jianfang. Clinicopathological and immunophenotypic analysis of 24 cases of transformed mycosis fungoides [J]. Chinese Journal of Dermatology, 2022, 55(1): 20-26. |
[7] | Huang Yanzhou, Zheng Min. Antiviral immunity in psoriasis [J]. Chinese Journal of Dermatology, 2022, 0(1): 20210254-e20210254. |
[8] | Li Tingting, Guan Mengmeng, Zhao Juan, Kang Xiaojing. Application of single-cell RNA sequencing in melanoma research [J]. Chinese Journal of Dermatology, 2022, 0(1): 20210191-e20210191. |
[9] | Lin Luyang, Chen Zhengliang, Zhang Xibao. Major immune-related cells in psoriasis vulgaris lesions [J]. Chinese Journal of Dermatology, 2021, 54(9): 830-834. |
[10] | Zhang Ying, Li Siqi, Gan Lu, Kong Yingqi, Li Yan, Chen Hao, Sun Jianfang. Role of flow cytometric analysis of peripheral blood in the diagnosis of lymphoma-associated erythroderma [J]. Chinese Journal of Dermatology, 2021, 54(9): 808-813. |
[11] | Yang Ting, Zhang Kaoyuan, Li Zizhuo, Li Xu, Yu Bo, Dou Xia. Role of group 2 innate lymphoid cells in mice with atopic dermatitis-like inflammatory response induced by MC903 [J]. Chinese Journal of Dermatology, 2021, 54(4): 335-341. |
[12] | Liu Fengjie, Tu Ping, Wang Yang. Molecular genetic pathogenesis of mycosis fungoides [J]. Chinese Journal of Dermatology, 2021, 54(2): 174-178. |
[13] | Zheng Zhe, Zhang Guolong, Wang Peiru, Ji Jie, Wang Xiuli, . Changes in immune cell subsets in cutaneous squamous cell carcinoma tissues from SKH-1 mouse models after aminolevulinic acid-based photodynamic therapy [J]. Chinese Journal of Dermatology, 2021, 54(11): 978-983. |
[14] | Zhou Xuyue, Luan Chao, Chen Kun. Application of phototherapy in cutaneous T-cell lymphomas [J]. Chinese Journal of Dermatology, 2020, 53(9): 764-767. |
[15] | Zhu Mengyan, Yu Wenzhong, Wang Ping, Liu Jiao, Li Zhao, Dai Hui, Xu Ai′e. Performance of reflectance confocal microscopy in localization diagnosis of and monitoring of therapeutic efficacy in early-stage mycosis fungoides [J]. Chinese Journal of Dermatology, 2020, 53(8): 634-639. |
|