Chinese Journal of Dermatology ›› 2023, Vol. 56 ›› Issue (9): 878-881.doi: 10.35541/cjd.20210023
• Reviews • Previous Articles Next Articles
Dong Dong, Liu Tianyi
Received:
2021-01-08
Revised:
2021-12-08
Online:
2023-09-15
Published:
2023-09-07
Contact:
Liu Tianyi
E-mail:tianyiliucn@126.com
Supported by:
Dong Dong, Liu Tianyi. Cell metabolism and metastasis of cutaneous malignant melanoma[J]. Chinese Journal of Dermatology, 2023, 56(9): 878-881.doi:10.35541/cjd.20210023
[1] | Zhang X, Cai L, Zhao S, et al. CX⁃F9, a novel RSK2 inhibitor, suppresses cutaneous melanoma cells proliferation and metastasis through regulating autophagy[J]. Biochem Pharmacol, 2019,168:14⁃25. doi: 10.1016/j.bcp.2019.06.014. |
[2] | Parmenter TJ, Kleinschmidt M, Kinross KM, et al. Response of BRAF⁃mutant melanoma to BRAF inhibition is mediated by a network of transcriptional regulators of glycolysis[J]. Cancer Discov, 2014,4(4):423⁃433. doi: 10.1158/2159⁃8290.CD⁃13⁃0440. |
[3] | 高天文, 郭伟楠. 中国黑素瘤研究进展与新治疗策略[J]. 中华皮肤科杂志, 2021,54(1):27⁃32. doi: 10.35541/cjd.20200560. |
[4] | Khan A, Valli E, Lam H, et al. Targeting metabolic activity in high⁃risk neuroblastoma through Monocarboxylate Transporter 1 (MCT1) inhibition[J]. Oncogene, 2020,39(17):3555⁃3570. doi: 10.1038/s41388⁃020⁃1235⁃2. |
[5] | Kamenisch Y, Baban T, Schuller W, et al. UVA⁃irradiation induces melanoma invasion via the enhanced Warburg effect[J]. J Invest Dermatol, 2016,136(9):1866⁃1875. doi: 10.1016/j.jid.2016.02.815. |
[6] | Ubellacker JM, Tasdogan A, Ramesh V, et al. Lymph protects metastasizing melanoma cells from ferroptosis[J]. Nature, 2020,585(7823):113⁃118. doi: 10.1038/s41586⁃020⁃2623⁃z. |
[7] | Marzagalli M, Ebelt ND, Manuel ER. Unraveling the crosstalk between melanoma and immune cells in the tumor microenvironment[J]. Semin Cancer Biol, 2019,59:236⁃250. doi: 10.1016/j.semcancer.2019.08.002. |
[8] | Feichtinger RG, Lang R, Geilberger R, et al. Melanoma tumors exhibit a variable but distinct metabolic signature[J]. Exp Dermatol, 2018,27(2):204⁃207. doi: 10.1111/exd.13465. |
[9] | Scott DA, Richardson AD, Filipp FV, et al. Comparative metabolic flux profiling of melanoma cell lines: beyond the Warburg effect[J]. J Biol Chem, 2011,286(49):42626⁃42634. doi: 10.1074/jbc.M111.282046. |
[10] | Luís R, Brito C, Pojo M. Melanoma metabolism: cell survival and resistance to therapy[J]. Adv Exp Med Biol, 2020,1219:203⁃223. doi: 10.1007/978⁃3⁃030⁃34025⁃4_11. |
[11] | Haq R, Shoag J, Andreu⁃Perez P, et al. Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF[J]. Cancer Cell, 2013,23(3):302⁃315. doi: 10.1016/j.ccr.2013.02.003. |
[12] | Sensi M, Nicolini G, Petti C, et al. Mutually exclusive NRASQ61R and BRAFV600E mutations at the single⁃cell level in the same human melanoma[J]. Oncogene, 2006,25(24):3357⁃3364. doi: 10.1038/sj.onc.1209379. |
[13] | Chae YC, Vaira V, Caino MC, et al. Mitochondrial Akt regulation of hypoxic tumor reprogramming[J]. Cancer Cell, 2016,30(2):257⁃272. doi: 10.1016/j.ccell.2016.07.004. |
[14] | Neagu M. Metabolic traits in cutaneous melanoma[J]. Front Oncol, 2020,10:851. doi: 10.3389/fonc.2020.00851. |
[15] | Li Z, Liu J, Que L, et al. The immunoregulatory protein B7⁃H3 promotes aerobic glycolysis in oral squamous carcinoma via PI3K/Akt/mTOR pathway[J]. J Cancer, 2019,10(23):5770⁃5784. doi: 10.7150/jca.29838. |
[16] | Dang CV, Le A, Gao P. MYC⁃induced cancer cell energy metabolism and therapeutic opportunities[J]. Clin Cancer Res, 2009,15(21):6479⁃6483. doi: 10.1158/1078⁃0432.CCR⁃09⁃0889. |
[17] | Zeller KI, Jegga AG, Aronow BJ, et al. An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets[J]. Genome Biol, 2003,4(10):R69. doi: 10.1186/gb⁃2003⁃4⁃10⁃r69. |
[18] | Ruby KN, Liu CL, Li Z, et al. Diagnostic and prognostic value of glucose transporters in melanocytic lesions[J]. Melanoma Res, 2019,29(6):603⁃611. doi: 10.1097/CMR.0000000000000626. |
[19] | Koch A, Ebert EV, Seitz T, et al. Characterization of glycolysis⁃related gene expression in malignant melanoma[J]. Pathol Res Pract, 2020,216(1):152752. doi: 10.1016/j.prp.2019.152752. |
[20] | Koch A, Lang SA, Wild PJ, et al. Glucose transporter isoform 1 expression enhances metastasis of malignant melanoma cells[J]. Oncotarget, 2015,6(32):32748⁃32760. doi: 10.18632/oncotarget. 4977. |
[21] | Burián Z, Ladányi A, Barbai T, et al. Selective inhibition of HIF1α expression by ZnSO4 has antitumoral effects in human melanoma[J]. Pathol Oncol Res, 2020,26(2):673⁃679. doi: 10.1007/s12253⁃018⁃00573⁃1. |
[22] | Corazao⁃Rozas P, Guerreschi P, Jendoubi M, et al. Mitochondrial oxidative stress is the Achille′s heel of melanoma cells resistant to Braf⁃mutant inhibitor[J]. Oncotarget, 2013,4(11):1986⁃1998. doi: 10.18632/oncotarget.1420. |
[23] | Wang L, Leite de Oliveira R, Huijberts S, et al. An acquired vulnerability of drug⁃resistant melanoma with therapeutic potential[J]. Cell, 2018,173(6):1413⁃1425.e14. doi: 10.1016/j.cell.2018.04.012. |
[24] | Avagliano A, Fiume G, Pelagalli A, et al. Metabolic plasticity of melanoma cells and their crosstalk with tumor microenvironment[J]. Front Oncol, 2020,10:722. doi: 10.3389/fonc.2020.00722. |
[25] | Vashisht Gopal YN, Gammon S, Prasad R, et al. A novel mitochondrial inhibitor blocks MAPK Pathway and overcomes MAPK inhibitor resistance in melanoma[J]. Clin Cancer Res, 2019,25(21):6429⁃6442. doi: 10.1158/1078⁃0432.CCR⁃19⁃0836. |
[26] | Bizzozero L, Cazzato D, Cervia D, et al. Acid sphingomyelinase determines melanoma progression and metastatic behaviour via the microphtalmia⁃associated transcription factor signalling pathway[J]. Cell Death Differ, 2014,21(4):507⁃520. doi: 10. 1038/cdd.2013.173. |
[27] | Coazzoli M, Napoli A, Roux⁃Biejat P, et al. Acid sphingomyelinase downregulation enhances mitochondrial fusion and promotes oxidative metabolism in a mouse model of melanoma[J]. Cells, 2020,9(4):848. doi: 10.3390/cells9040848. |
[28] | Tasdogan A, Faubert B, Ramesh V, et al. Metabolic heterogeneity confers differences in melanoma metastatic potential[J]. Nature, 2020,577(7788):115⁃120. doi: 10.1038/s41586⁃019⁃1847⁃2. |
[29] | Kfoury A, Armaro M, Collodet C, et al. AMPK promotes survival of c⁃Myc⁃positive melanoma cells by suppressing oxidative stress[J]. EMBO J, 2018,37(5):e97673. doi: 10.15252/embj.201797673. |
[30] | Lee CK, Jeong SH, Jang C, et al. Tumor metastasis to lymph nodes requires YAP⁃dependent metabolic adaptation[J]. Science, 2019,363(6427):644⁃649. doi: 10.1126/science.aav0173. |
[31] | Magtanong L, Ko PJ, To M, et al. Exogenous monounsaturated fatty acids promote a ferroptosis⁃resistant cell state[J]. Cell Chem Biol, 2019,26(3):420⁃432.e9. doi: 10.1016/j.chembiol. 2018.11.016. |
[32] | Raica M, Jitariu AA, Cimpean AM. Lymphangiogenesis and anti⁃lymphangiogenesis in cutaneous melanoma[J]. Anticancer Res, 2016,36(9):4427⁃4435. doi: 10.21873/anticanres.10986. |
[33] | Garmy⁃Susini B, Avraamides CJ, Desgrosellier JS, et al. PI3Kα activates integrin α4β1 to establish a metastatic niche in lymph nodes[J]. Proc Natl Acad Sci U S A, 2013,110(22):9042⁃9047. doi: 10.1073/pnas.1219603110. |
[34] | Garmy⁃Susini B, Avraamides CJ, Schmid MC, et al. Integrin alpha4beta1 signaling is required for lymphangiogenesis and tumor metastasis[J]. Cancer Res, 2010,70(8):3042⁃3051. doi: 10.1158/0008⁃5472.CAN⁃09⁃3761. |
[35] | Cortez A, Josefsson A, McCarty G, et al. Evaluation of [(225)Ac]Ac⁃DOTA⁃anti⁃VLA⁃4 for targeted alpha therapy of metastatic melanoma[J]. Nucl Med Biol, 2020,88⁃89:62⁃72. doi: 10.1016/j.nucmedbio.2020.07.006. |
[36] | Baumann F, Leukel P, Doerfelt A, et al. Lactate promotes glioma migration by TGF⁃beta2⁃dependent regulation of matrix metalloproteinase⁃2[J]. Neuro Oncol, 2009,11(4):368⁃380. doi: 10.1215/15228517⁃2008⁃106. |
[37] | Jacobs SR, Herman CE, Maciver NJ, et al. Glucose uptake is limiting in T cell activation and requires CD28⁃mediated Akt⁃dependent and independent pathways[J]. J Immunol, 2008,180(7):4476⁃4486. doi: 10.4049/jimmunol.180.7.4476. |
[38] | Najjar YG, Menk AV, Sander C, et al. Tumor cell oxidative metabolism as a barrier to PD⁃1 blockade immunotherapy in melanoma[J]. JCI Insight, 2019,4(5):e124989. doi: 10.1172/jci.insight.124989. |
[39] | Kim SH, Roszik J, Grimm EA, et al. Impact of l⁃arginine metabolism on immune response and anticancer immunotherapy[J]. Front Oncol, 2018,8:67. doi: 10.3389/fonc.2018.00067. |
[1] | Yang Yongting, Li Tingting, Kang Xiaojing. Biomarkers related to the treatment of melanoma with immune checkpoint inhibitors [J]. Chinese Journal of Dermatology, 2023, 56(3): 278-283. |
[2] | Wang Yuanli, Liu Ling, Sun Zhongbin, Li Kai. Analysis of 141 cases clinically misdiagnosed as melanoma [J]. Chinese Journal of Dermatology, 2023, 56(3): 244-246. |
[3] | Li Fang, Wang Xiaoqing, Liu Mengxi, Jiang Jiayi, Huang Shudai, Wang Daguang. Research advances in recurrent melanocytic nevus [J]. Chinese Journal of Dermatology, 2023, 0(2): 20220431-e20220431. |
[4] | Li Tingting, Kang Xiaojing. Gut microbiota and immune checkpoint inhibitor treatment of melanoma [J]. Chinese Journal of Dermatology, 2023, 56(2): 177-180. |
[5] | Gao Ni, Liu Yu, Wang Lei, Liu Ling, Gao Tianwen, Li Kai . Clinical and histopathological analysis of five cases of solitary dermal melanoma [J]. Chinese Journal of Dermatology, 2022, 55(5): 408-410. |
[6] | He Suling, Tian Xin, Liang Jingyao, Shao Lei, Li Junlong, Huang Qiongxiao, Liu Yumei, Wang Jianqin. Skin microecology in patients with severe atopic dermatitis at acute and remission phases [J]. Chinese Journal of Dermatology, 2022, 55(4): 329-336. |
[7] | Li Tingting, Guan Mengmeng, Zhao Juan, Kang Xiaojing. Application of single-cell RNA sequencing in melanoma research [J]. Chinese Journal of Dermatology, 2022, 0(1): 20210191-e20210191. |
[8] | Cao Meng, Hong Anlan, Wang Yan, Fang Fang. Clinical progress in pediatric melanoma [J]. Chinese Journal of Dermatology, 2022, 0(1): 20210158-e20210158. |
[9] | Guo Wei, Zhao Tao, Guo Weinan, Ma Cuiling, Gao Tianwen, Zhao Jianhong, Li Bing. Surgical treatment strategies and outcomes of early-stage nail apparatus melanoma: a retrospective analysis of 115 cases [J]. Chinese Journal of Dermatology, 2021, 54(9): 777-784. |
[10] | Wang Daguang, Jiang Jiayi. Considerations in the diagnosis and treatment of several nail diseases [J]. Chinese Journal of Dermatology, 2021, 54(8): 733-737. |
[11] | Wang Yanqing, Guo Ying. Pathological features and diagnosis of Spitz nevus [J]. Chinese Journal of Dermatology, 2021, 54(4): 308-312. |
[12] | Zhu Mengyan, Li Zhao, Wang Jiaqi, Ma Yangyang, Zhang Xiaoyan, Wang Ping. Mechanisms regulating melanoma by the ubiquitin-conjugating enzyme E2S: a bioinformatics analysis [J]. Chinese Journal of Dermatology, 2021, 54(4): 300-307. |
[13] | Sha Shanshan, Li Jun, Tao Juan. Melanoma immunotherapy: difficulties and strategies [J]. Chinese Journal of Dermatology, 2021, 54(4): 313-317. |
[14] | Zhang Qian, Liu Yu, Wang Lei, Liu Ling, Gao Tianwen, Li Kai. Clinical and histopathological analysis of three cases of nevoid melanoma [J]. Chinese Journal of Dermatology, 2021, 54(11): 990-993. |
[15] | Yan Dong, Guo Yanyang, Zhang Yuwei, Hai Luming, Gao Tianwen, Zhu Guannan. Dermoscopic features of 266 cases of melanonychia [J]. Chinese Journal of Dermatology, 2021, 54(11): 993-997. |
|