Chinese Journal of Dermatology ›› 2022, Vol. 55 ›› Issue (5): 446-449.doi: 10.35541/cjd.20200178
• Reviews • Previous Articles Next Articles
Song Xiaoting, Liu Bo, Chen Yudi, Zhao Zuotao
Received:
2020-02-26
Revised:
2020-07-30
Online:
2022-05-15
Published:
2022-04-29
Contact:
Zhao Zuotao
E-mail:zhaozuotaotao@163.com
Supported by:
Song Xiaoting, Liu Bo, Chen Yudi, Zhao Zuotao. Pathophysiological pathogenesis of rosacea[J]. Chinese Journal of Dermatology, 2022, 55(5): 446-449.doi:10.35541/cjd.20200178
[1] | Akdogan N, Alli N, Incel Uysal P, et al. Role of serum 25⁃hydroxyvitamin D levels and vitamin D receptor gene polymorphisms in patients with rosacea: a case⁃control study[J]. Clin Exp Dermatol, 2019,44(4):397⁃403. doi: 10.1111/ced. 13769. |
[2] | Hayran Y, Lay I, Mocan MC, et al. Vascular endothelial growth factor gene polymorphisms in patients with rosacea: a case⁃control study[J]. J Am Acad Dermatol, 2019,81(2):348⁃354. doi: 10.1016/j.jaad.2019.03.055. |
[3] | Awosika O, Oussedik E. Genetic predisposition to rosacea[J]. Dermatol Clin, 2018,36(2):87⁃92. doi: 10.1016/j.det.2017.11. 002. |
[4] | Wang L, Lu R, Wang Y, et al. Identification of long noncoding RNA associated ceRNA networks in rosacea[J]. Biomed Res Int, 2020,2020:9705950. doi: 10.1155/2020/9705950. |
[5] | Egeberg A, Hansen PR, Gislason GH, et al. Clustering of autoimmune diseases in patients with rosacea[J]. J Am Acad Dermatol, 2016,74(4):667⁃672.e1. doi: 10.1016/j.jaad.2015.11. 004. |
[6] | Li J, Wang B, Deng Y, et al. Epidemiological features of rosacea in Changsha, China: a population⁃based, cross⁃sectional study[J]. J Dermatol, 2020,47(5):497⁃502. doi: 10.1111/1346⁃8138. 15301. |
[7] | Wollina U. Is rosacea a systemic disease?[J]. Clin Dermatol, 2019,37(6):629⁃635. doi: 10.1016/j.clindermatol.2019.07.032. |
[8] | Niyonsaba F, Kiatsurayanon C, Chieosilapatham P, et al. Friends or foes? Host defense (antimicrobial) peptides and proteins in human skin diseases[J]. Exp Dermatol, 2017,26(11):989⁃998. doi: 10.1111/exd.13314. |
[9] | Kulkarni NN, Takahashi T, Sanford JA, et al. Innate immune dysfunction in rosacea promotes photosensitivity and vascular adhesion molecule expression[J]. J Invest Dermatol, 2020,140(3):645⁃655.e6. doi: 10.1016/j.jid.2019.08.436. |
[10] | Liu T, Deng Z, Xie H, et al. ADAMDEC1 promotes skin inflammation in rosacea via modulating the polarization of M1 macrophages[J]. Biochem Biophys Res Commun, 2020,521(1):64⁃71. doi: 10.1016/j.bbrc.2019.10.073. |
[11] | Moura A, Guedes F, Rivitti⁃Machado MC, et al. Inate immunity in rosacea. Langerhans cells, plasmacytoid dentritic cells, Toll⁃like receptors and inducible oxide nitric synthase (iNOS) expression in skin specimens: case⁃control study[J]. Arch Dermatol Res, 2018,310(2):139⁃146. doi: 10.1007/s00403⁃018⁃1806⁃z. |
[12] | Wladis EJ, Lau KW, Adam AP. Nuclear factor kappa⁃B is enriched in eyelid specimens of rosacea: implications for pathogenesis and therapy[J]. Am J Ophthalmol, 2019,201:72⁃81. doi: 10.1016/j.ajo.2019.01.018. |
[13] | Li Y, Xie H, Deng Z, et al. Tranexamic acid ameliorates rosacea symptoms through regulating immune response and angiogenesis[J]. Int Immunopharmacol, 2019,67:326⁃334. doi: 10.1016/j.intimp.2018.12.031. |
[14] | Singh AK, McGoldrick LL, Sobolevsky AI. Structure and gating mechanism of the transient receptor potential channel TRPV3[J]. Nat Struct Mol Biol, 2018,25(9):805⁃813. doi: 10.1038/s41594⁃018⁃0108⁃7. |
[15] | Zubcevic L, Borschel WF, Hsu AL, et al. Regulatory switch at the cytoplasmic interface controls TRPV channel gating[J]. Elife, 2019,8:e47746. doi: 10.7554/eLife.47746. |
[16] | Caterina MJ, Pang Z. TRP channels in skin biology and pathophysiology[J]. Pharmaceuticals (Basel), 2016,9(4):77. doi: 10. 3390/ph9040077. |
[17] | Choi JE, Di Nardo A. Skin neurogenic inflammation[J]. Semin Immunopathol, 2018,40(3):249⁃259. doi: 10.1007/s00281⁃018⁃0675⁃z. |
[18] | Medgyesi B, Dajnoki Z, Béke G, et al. Rosacea is characterized by a profoundly diminished skin barrier[J]. J Invest Dermatol, 2020,S0022⁃202X(20)31198⁃2. doi: 10.1016/j.jid.2020.02.025. |
[19] | Deng Z, Chen M, Xie H, et al. Claudin reduction may relate to an impaired skin barrier in rosacea[J]. J Dermatol, 2019,46(4):314⁃321. doi: 10.1111/1346⁃8138.14792. |
[20] | Zuo Z, Wang B, Shen M, et al. Skincare habits and rosacea in 3,439 Chinese adolescents: a university⁃based cross⁃sectional study[J]. Acta Derm Venereol, 2020,100(6):adv00081. doi: 10. 2340/00015555⁃3442. |
[21] | Rainer BM, Thompson KG, Antonescu C, et al. Characterization and analysis of the skin microbiota in rosacea: a case⁃control study[J]. Am J Clin Dermatol, 2020,21(1):139⁃147. doi: 10. 1007/s40257⁃019⁃00471⁃5. |
[22] | Aktaş Karabay E, Aksu Çerman A. Demodex folliculorum infestations in common facial dermatoses: acne vulgaris, rosacea, seborrheic dermatitis[J]. An Bras Dermatol, 2020,95(2):187⁃193. doi: 10.1016/j.abd.2019.08.023. |
[23] | Forton F, De Maertelaer V. Erythematotelangiectatic rosacea may be associated with a subclinical stage of demodicosis: a case⁃control study[J]. Br J Dermatol, 2019,181(4):818⁃825. doi: 10. 1111/bjd.17817. |
[24] | Lacey N, Russell⁃Hallinan A, Zouboulis CC, et al. Demodex mites modulate sebocyte immune reaction: possible role in the pathogenesis of rosacea[J]. Br J Dermatol, 2018,179(2):420⁃430. doi: 10.1111/bjd.16540. |
[25] | Gazi U, Gureser AS, Oztekin A, et al. Skin⁃homing T⁃cell responses associated with Demodex infestation and rosacea[J]. Parasite Immunol, 2019,41(8):e12658. doi: 10.1111/pim.12658. |
[26] | Maher A, Staunton K, Kavanagh K. Analysis of the effect of temperature on protein abundance in Demodex⁃associated Bacillus oleronius[J]. Pathog Dis, 2018,76(4). doi: 10.1093/femspd/fty032. |
[27] | Clanner⁃Engelshofen BM, French LE, Reinholz M. Corynebacterium kroppenstedtii subsp. demodicis is the endobacterium of Demodex folliculorum[J]. J Eur Acad Dermatol Venereol, 2020,34(5):1043⁃1049. doi: 10.1111/jdv.16069. |
[28] | Yang X. Relationship between Helicobacter pylori and rosacea: review and discussion[J]. BMC Infect Dis, 2018,18(1):318. doi: 10.1186/s12879⁃018⁃3232⁃4. |
[29] | Drago F, De Col E, Agnoletti AF, et al. The role of small intestinal bacterial overgrowth in rosacea: a 3⁃year follow⁃up[J]. J Am Acad Dermatol, 2016,75(3):e113⁃e115. doi: 10.1016/j.jaad.2016.01.059. |
[30] | Saleh P, Naghavi⁃Behzad M, Herizchi H, et al. Effects of Helicobacter pylori treatment on rosacea: a single⁃arm clinical trial study[J]. J Dermatol, 2017,44(9):1033⁃1037. doi: 10. 1111/1346⁃8138.13878. |
[31] | Yüksel M, Ülfer G. Measurement of the serum zonulin levels in patients with acne rosacea[J/OL]. J Dermatolog Treat, 2020. [2020⁃04⁃23]. doi: 10.1080/09546634.2020.1757015. [published online ahead of print Apr 23,2020]. |
[1] | Liu Yixuan, Jiang Peiyu, Liu Yunyi, Zhang Jiawen, Tao Meng, Li Min, Xu Yang. Mechanism of neurogenic inflammation and botulinum toxin treatment in rosacea [J]. Chinese Journal of Dermatology, 2022, 55(6): 552-554. |
[2] | Yu Su, Yu Tianze, Li Wei. Role of the autonomic nervous system in immune imbalance in atopic dermatitis [J]. Chinese Journal of Dermatology, 2022, 55(4): 362-365. |
[3] | Han Xiaofeng, Sun Juan, Qiu Lei, Wei Li, Ma Lin. Analysis of clinical and pathological features of 29 cases of perforating pilomatricoma [J]. Chinese Journal of Dermatology, 2022, 55(3): 196-199. |
[4] | Wang Jiaqi, Wang Ping, Li Liuyu, Fan Qimin, Zhu Mengyan, Wang Yanqing, Zhou Hongyu, Shen Hong, Xu Ai′e. Cutaneous hypopigmented lymphoproliferative disorders: a clinicopathological study of 41 cases [J]. Chinese Journal of Dermatology, 2022, 55(2): 110-115. |
[5] | Wang Xiaoyan, Zhang Jiawen, Liu Yunyi, Liu Yixuan, Jiang Peiyu, Li Min, Meng Tao, Xu Yang. Skin imaging and noninvasive measurements of rosacea [J]. Chinese Journal of Dermatology, 2022, 0(1): 20200939-e20200939. |
[6] | Zhang Ying, Gan Lu, Li Siqi, Li Yan, Song Hao, Shao Xuebao, Zhang Wei, Xu Xiulian, Jiang Yiqun, Zeng Xuesi, Chen Hao, Sun Jianfang. Clinicopathological and immunophenotypic analysis of 24 cases of transformed mycosis fungoides [J]. Chinese Journal of Dermatology, 2022, 55(1): 20-26. |
[7] | Chen Fengming, Kang Hanmei, Gao Tianwen, Fu Meng, Wang Lei, Liu Ling. Clinicopathological features of 10 cases of congenital melanocytic nevi complicated by proliferative nodules [J]. Chinese Journal of Dermatology, 2021, 54(9): 785-789. |
[8] | Wang Yifei, Geng Yi, Miao Qiuju, Song Hao, Xu Xiulian, Sun Jianfang. Clinicopathological analysis of ten cases of mucinous nevi [J]. Chinese Journal of Dermatology, 2021, 54(9): 804-807. |
[9] | Gao Fei, Tan Yuan, Ma Le, Huang Ao, Zhang Shuai, Luo Hong. Construction of an in vivo diffusion model of Treponema pallidum in New Zealand rabbits [J]. Chinese Journal of Dermatology, 2021, 54(8): 702-704. |
[10] | Li Yan, Xu Wei, Li Linfeng. Efficacy of topical hydrocortisone butyrate cream combined with a skin cream dressing in the treatment of atopic dermatitis: a randomized, open, controlled clinical study [J]. Chinese Journal of Dermatology, 2021, 54(5): 452-455. |
[11] | Li Jian, Song Zhiqiang. New insights into facial flushing and erythema in rosacea [J]. Chinese Journal of Dermatology, 2021, 54(4): 360-363. |
[12] | Deng Qing, Liu Fangfen, Shi Wei, Xie Hongfu, Li Ji, Huang Yingxue. Willingness to pay for treatment of rosacea and its influencing factors: a survey of patients in Changsha region [J]. Chinese Journal of Dermatology, 2021, 54(4): 352-355. |
[13] | Wang Yanqing, Guo Ying. Pathological features and diagnosis of Spitz nevus [J]. Chinese Journal of Dermatology, 2021, 54(4): 308-312. |
[14] | Rosacea Research Center, Chinese Society of Dermatology, Rosacea Professional Committee, Chinese Dermatologist Association. Guidelines for the diagnosis and treatment of rosacea in China (2021 edition) [J]. Chinese Journal of Dermatology, 2021, 54(4): 279-288. |
[15] | Zhang Erjia, Lin Tong. Efficacy of two kinds of intense pulsed light for the treatment of rosacea [J]. Chinese Journal of Dermatology, 2021, 54(3): 207-211. |
|