[1] |
Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy[J]. Nat Rev Cancer, 2019,19(3):133⁃150. doi: 10.1038/s41568⁃019⁃0116⁃x.
|
[2] |
Kasakovski D, Skrygan M, Gambichler T, et al. Advances in targeting cutaneous melanoma[J]. Cancers (Basel), 2021,13(9):2090. doi: 10.3390/cancers13092090.
|
[3] |
Hamid O, Robert C, Daud A, et al. Five⁃year survival outcomes for patients with advanced melanoma treated with pembrolizumab in KEYNOTE⁃001[J]. Ann Oncol, 2019,30(4):582⁃588. doi: 10.1093/annonc/mdz011.
|
[4] |
Larkin J, Chiarion⁃Sileni V, Gonzalez R, et al. Five⁃year survival with combined nivolumab and ipilimumab in advanced melanoma[J]. N Engl J Med, 2019,381(16):1535⁃1546. doi: 10.1056/NEJMoa1910836.
|
[5] |
Larkin J, Chiarion⁃Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma[J]. N Engl J Med, 2015,373(1):23⁃34. doi: 10.1056/NEJMoa1504030.
|
[6] |
Rodríguez⁃Cerdeira C, Carnero Gregorio M, López⁃Barcenas A, et al. Advances in immunotherapy for melanoma: a comprehensive review[J]. Mediators Inflamm, 2017,2017:3264217. doi: 10.1155/2017/3264217.
|
[7] |
Barrueto L, Caminero F, Cash L, et al. Resistance to checkpoint inhibition in cancer immunotherapy[J]. Transl Oncol, 2020,13(3):100738. doi: 10.1016/j.tranon.2019.12.010.
|
[8] |
Luke JJ, Flaherty KT, Ribas A, et al. Targeted agents and immunotherapies: optimizing outcomes in melanoma[J]. Nat Rev Clin Oncol, 2017,14(8):463⁃482. doi: 10.1038/nrclinonc. 2017.43.
|
[9] |
Olbryt M, Rajczykowski M, Widłak W. Biological factors behind melanoma response to immune checkpoint inhibitors[J]. Int J Mol Sci, 2020,21(11):4071. doi: 10.3390/ijms21114071.
|
[10] |
Espinosa E, Márquez⁃Rodas I, Soria A, et al. Predictive factors of response to immunotherapy⁃a review from the Spanish Melanoma Group (GEM)[J]. Ann Transl Med, 2017,5(19):389. doi: 10.21037/atm.2017.08.10.
|
[11] |
Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti⁃PD⁃1 antibody in cancer[J]. N Engl J Med, 2012,366(26):2443⁃2454. doi: 10.1056/NEJMoa1200690.
|
[12] |
Rozeman EA, Dekker T, Haanen J, et al. Advanced melanoma: current treatment options, biomarkers, and future perspectives[J]. Am J Clin Dermatol, 2018,19(3):303⁃317. doi: 10.1007/s40257⁃017⁃0325⁃6.
|
[13] |
Patel SP, Kurzrock R. PD⁃L1 expression as a predictive biomarker in cancer immunotherapy[J]. Mol Cancer Ther, 2015,14(4):847⁃856. doi: 10.1158/1535⁃7163.MCT⁃14⁃0983.
|
[14] |
Mansfield AS, Murphy SJ, Peikert T, et al. Heterogeneity of programmed cell death ligand 1 expression in multifocal lung cancer[J]. Clin Cancer Res, 2016,22(9):2177⁃2182. doi: 10. 1158/1078⁃0432.CCR⁃15⁃2246.
|
[15] |
Hellmann MD, Nathanson T, Rizvi H, et al. Genomic features of response to combination immunotherapy in patients with advanced non⁃small⁃cell lung cancer[J]. Cancer Cell, 2018,33(5):843⁃852.e4. doi: 10.1016/j.ccell.2018.03.018.
|
[16] |
Sade⁃Feldman M, Yizhak K, Bjorgaard SL, et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma[J]. Cell, 2018,175(4):998⁃1013.e20. doi: 10.1016/j.cell.2018.10.038.
|
[17] |
Tumeh PC, Harview CL, Yearley JH, et al. PD⁃1 blockade induces responses by inhibiting adaptive immune resistance[J]. Nature, 2014,515(7528):568⁃571. doi: 10.1038/nature13954.
|
[18] |
Riaz N, Havel JJ, Makarov V, et al. Tumor and microenvironment evolution during immunotherapy with nivolumab[J]. Cell, 2017,171(4):934⁃949.e16. doi: 10.1016/j.cell.2017.09.028.
|
[19] |
Snyder A, Makarov V, Merghoub T, et al. Genetic basis for clinical response to CTLA⁃4 blockade in melanoma[J]. N Engl J Med, 2014,371(23):2189⁃2199. doi: 10.1056/NEJMoa1406498.
|
[20] |
Fabrizio DA, George TJ Jr, Dunne RF, et al. Beyond microsatellite testing: assessment of tumor mutational burden identifies subsets of colorectal cancer who may respond to immune checkpoint inhibition[J]. J Gastrointest Oncol, 2018,9(4):610⁃617. doi: 10.21037/jgo.2018.05.06.
|
[21] |
Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD⁃1 blockade[J]. Science, 2017,357(6349):409⁃413. doi: 10.1126/science.aan6733.
|
[22] |
Liebl MC, Hofmann TG. Identification of responders to immune checkpoint therapy: which biomarkers have the highest value?[J]. J Eur Acad Dermatol Venereol, 2019,33 Suppl 8:52⁃56. doi: 10.1111/jdv.15992.
|
[23] |
Meyers DE, Banerji S. Biomarkers of immune checkpoint inhibitor efficacy in cancer[J]. Curr Oncol, 2020,27(Suppl 2):S106⁃S114. doi: 10.3747/co.27.5549.
|
[24] |
Amann VC, Ramelyte E, Thurneysen S, et al. Developments in targeted therapy in melanoma[J]. Eur J Surg Oncol, 2017,43(3):581⁃593. doi: 10.1016/j.ejso.2016.10.014.
|
[25] |
Van Allen EM, Miao D, Schilling B, et al. Genomic correlates of response to CTLA⁃4 blockade in metastatic melanoma[J]. Science, 2015,350(6257):207⁃211. doi: 10.1126/science.aad0095.
|
[26] |
McGranahan N, Furness AJ, Rosenthal R, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade[J]. Science, 2016,351(6280):1463⁃1469. doi: 10.1126/science.aaf1490.
|
[27] |
Duan F, Duitama J, Al Seesi S, et al. Genomic and bioinformatic profiling of mutational neoepitopes reveals new rules to predict anticancer immunogenicity[J]. J Exp Med, 2014,211(11):2231⁃2248. doi: 10.1084/jem.20141308.
|
[28] |
Łuksza M, Riaz N, Makarov V, et al. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy[J]. Nature, 2017,551(7681):517⁃520. doi: 10.1038/nature24473.
|
[29] |
Kim S, Kim HS, Kim E, et al. Neopepsee: accurate genome⁃level prediction of neoantigens by harnessing sequence and amino acid immunogenicity information[J]. Ann Oncol, 2018,29(4):1030⁃1036. doi: 10.1093/annonc/mdy022.
|
[30] |
Davoli T, Uno H, Wooten EC, et al. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy[J]. Science, 2017,355(6322):eaaf8399. doi: 10.1126/science.aaf8399.
|
[31] |
Leonardi GC, Falzone L, Salemi R, et al. Cutaneous melanoma: from pathogenesis to therapy (Review)[J]. Int J Oncol, 2018,52(4):1071⁃1080. doi: 10.3892/ijo.2018.4287.
|
[32] |
Lee JH, Long GV, Boyd S, et al. Circulating tumour DNA predicts response to anti⁃PD1 antibodies in metastatic melanoma[J]. Ann Oncol, 2017,28(5):1130⁃1136. doi: 10.1093/annonc/mdx026.
|
[33] |
Cabel L, Riva F, Servois V, et al. Circulating tumor DNA changes for early monitoring of anti⁃PD1 immunotherapy: a proof⁃of⁃concept study[J]. Ann Oncol, 2017,28(8):1996⁃2001. doi: 10.1093/annonc/mdx212.
|
[34] |
Lee JH, Long GV, Menzies AM, et al. Association between circulating tumor dna and pseudoprogression in patients with metastatic melanoma treated with anti⁃programmed cell death 1 antibodies[J]. JAMA Oncol, 2018,4(5):717⁃721. doi: 10.1001/jamaoncol.2017.5332.
|
[35] |
Tomela K, Pietrzak B, Schmidt M, et al. The tumor and host immune signature, and the gut microbiota as predictive biomarkers for immune checkpoint inhibitor response in melanoma patients[J]. Life (Basel), 2020,10(10). doi: 10.3390/life10100219.
|
[36] |
Jiang H, Gebhardt C, Umansky L, et al. Elevated chronic inflammatory factors and myeloid⁃derived suppressor cells indicate poor prognosis in advanced melanoma patients[J]. Int J Cancer, 2015,136(10):2352⁃2360. doi: 10.1002/ijc.29297.
|
[37] |
Gebhardt C, Sevko A, Jiang H, et al. Myeloid cells and related chronic inflammatory factors as novel predictive markers in melanoma treatment with ipilimumab[J]. Clin Cancer Res, 2015,21(24):5453⁃5459. doi: 10.1158/1078⁃0432.CCR⁃15⁃0676.
|
[38] |
Weber J, Gibney G, Kudchadkar R, et al. Phase I/II study of metastatic melanoma patients treated with nivolumab who had progressed after ipilimumab[J]. Cancer Immunol Res, 2016,4(4):345⁃353. doi: 10.1158/2326⁃6066.CIR⁃15⁃0193.
|
[39] |
Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD⁃1⁃based immunotherapy against epithelial tumors[J]. Science, 2018,359(6371):91⁃97. doi: 10. 1126/science.aan3706.
|
[40] |
Vétizou M, Pitt JM, Daillère R, et al. Anticancer immunotherapy by CTLA⁃4 blockade relies on the gut microbiota[J]. Science, 2015,350(6264):1079⁃1084. doi: 10.1126/science.aad1329.
|
[41] |
Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti⁃PD⁃1 immunotherapy in melanoma patients[J]. Science, 2018,359(6371):97⁃103. doi: 10.1126/science.aan4236.
|
[42] |
Peters BA, Wilson M, Moran U, et al. Relating the gut metagenome and metatranscriptome to immunotherapy responses in melanoma patients[J]. Genome Med, 2019,11(1):61. doi: 10.1186/s13073⁃019⁃0672⁃4.
|
[43] |
Frankel AE, Coughlin LA, Kim J, et al. Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients[J]. Neoplasia, 2017,19(10):848⁃855. doi: 10.1016/j.neo.2017.08.004.
|
[44] |
Coutzac C, Jouniaux JM, Paci A, et al. Systemic short chain fatty acids limit antitumor effect of CTLA⁃4 blockade in hosts with cancer[J]. Nat Commun, 2020,11(1):2168. doi: 10.1038/s41467⁃ 020⁃16079⁃x.
|
[45] |
Nomura M, Nagatomo R, Doi K, et al. Association of short⁃chain fatty acids in the gut microbiome with clinical response to treatment with nivolumab or pembrolizumab in patients with solid cancer tumors[J]. JAMA Netw Open, 2020,3(4):e202895. doi: 10.1001/jamanetworkopen.2020.2895.
|