[1] |
裘卓琼, 李巍. 皮肤菌群⁃宿主相互作用及其与炎症性皮肤病的关系[J]. 中华皮肤科杂志, 2020,53(7):576⁃580. doi: 10.35541/cjd.20190140.
|
[2] |
Dréno B, Dagnelie MA, Khammari A, et al. The skin microbiome: a new actor in inflammatory acne[J]. Am J Clin Dermatol, 2020,21(Suppl 1):18⁃24. doi: 10.1007/s40257⁃020⁃00531⁃1.
|
[3] |
Kobayashi T, Voisin B, Kim DY, et al. Homeostatic control of sebaceous glands by innate lymphoid cells regulates commensal bacteria equilibrium[J]. Cell, 2019,176(5):982⁃997.e16. doi: 10.1016/j.cell.2018.12.031.
|
[4] |
O′Sullivan JN, Rea MC, et al. Human skin microbiota is a rich source of bacteriocin⁃producing staphylococci that kill human pathogens[J]. FEMS Microbiol Ecol, 2019,95(2):fiy241. doi: 10.1093/femsec/fiy241.
|
[5] |
Kumari A, Tewari R, Singh R. Antagonistic interaction of Staphylococcus aureus and Staphylococcus epidermidis with Rhizopus arrhizus mediated by phenol soluble modulins and organic acids[J]. ACS Infect Dis, 2019,5(11):1887⁃1895. doi: 10.1021/acsinfecdis.9b00205.
|
[6] |
Xia X, Li Z, Liu K, et al. Staphylococcal LTA⁃induced miR⁃143 inhibits Propionibacterium acnes⁃mediated inflammatory response in skin[J]. J Invest Dermatol, 2016,136(3):621⁃630. doi: 10.1016/j.jid.2015.12.024.
|
[7] |
Laborel⁃Préneron E, Bianchi P, Boralevi F, et al. Effects of the Staphylococcus aureus and Staphylococcus epidermidis secretomes isolated from the skin microbiota of atopic children on CD4+ T cell activation[J]. PLoS One, 2015,10(10):e0141067. doi: 10.1371/journal.pone.0141067.
|
[8] |
Volz T, Kaesler S, Draing C, et al. Induction of IL⁃10⁃balanced immune profiles following exposure to LTA from Staphylococcus epidermidis[J]. Exp Dermatol, 2018,27(4):318⁃326. doi: 10. 1111/exd.13540.
|
[9] |
Keshari S, Balasubramaniam A, Myagmardoloonjin B, et al. Butyric acid from probiotic Staphylococcus epidermidis in the skin microbiome down⁃regulates the ultraviolet⁃induced pro⁃inflammatory IL⁃6 cytokine via short⁃chain fatty acid receptor[J]. Int J Mol Sci, 2019,20(18):4477. doi: 10.3390/ijms20184477.
|
[10] |
Scharschmidt TC. Establishing tolerance to commensal skin bacteria: timing is everything[J]. Dermatol Clin, 2017,35(1):1⁃9. doi: 10.1016/j.det.2016.07.007.
|
[11] |
Naik S, Bouladoux N, Wilhelm C, et al. Compartmentalized control of skin immunity by resident commensals[J]. Science, 2012,337(6098):1115⁃1119. doi: 10.1126/science.1225152.
|
[12] |
Cogen AL, Yamasaki K, Muto J, et al. Staphylococcus epidermidis antimicrobial delta⁃toxin (phenol⁃soluble modulin⁃gamma) cooperates with host antimicrobial peptides to kill group A Streptococcus[J/OL]. PLoS One, 2010,5(1):e8557. doi: 10.1371/journal.pone.0008557.
|
[13] |
Wang Z, Mascarenhas N, Eckmann L, et al. Skin microbiome promotes mast cell maturation by triggering stem cell factor production in keratinocytes[J]. J Allergy Clin Immunol, 2017,139(4):1205⁃1216.e6. doi: 10.1016/j.jaci.2016.09.019.
|
[14] |
Dengler Haunreiter V, Boumasmoud M, Häffner N, et al. In⁃host evolution of Staphylococcus epidermidis in a pacemaker⁃associated endocarditis resulting in increased antibiotic tolerance[J]. Nat Commun, 2019,10(1):1149. doi: 10.1038/s41467⁃019⁃09053⁃9.
|
[15] |
Oliveira WF, Silva P, Silva R, et al. Staphylococcus aureus and Staphylococcus epidermidis infections on implants[J]. J Hosp Infect, 2018,98(2):111⁃117. doi: 10.1016/j.jhin.2017.11.008.
|
[16] |
Wang Y, Kao MS, Yu J, et al. A precision microbiome approach using sucrose for selective augmentation of Staphylococcus epidermidis fermentation against Propionibacterium acnes[J]. Int J Mol Sci, 2016,17(11):1870. doi: 10.3390/ijms17111870.
|
[17] |
Wang Y, Kuo S, Shu M, et al. Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris[J]. Appl Microbiol Biotechnol, 2014,98(1):411⁃424. doi: 10.1007/s00253⁃013⁃5394⁃8.
|
[18] |
Skabytska Y, Biedermann T. Staphylococcus epidermidis sets things right again[J]. J Invest Dermatol, 2016,136(3):559⁃560. doi: 10.1016/j.jid.2015.11.016.
|
[19] |
Christensen GJ, Scholz CF, Enghild J, et al. Antagonism between Staphylococcus epidermidis and Propionibacterium acnes and its genomic basis[J]. BMC Genomics, 2016,17:152. doi: 10. 1186/s12864⁃016⁃2489⁃5.
|
[20] |
Dagnelie MA, Corvec S, Saint⁃Jean M, et al. Decrease in diversity of Propionibacterium acnes phylotypes in patients with severe acne on the back[J]. Acta Derm Venereol, 2018,98(2):262⁃267. doi: 10.2340/00015555⁃2847.
|
[21] |
Kang SS, Sim JR, Yun CH, et al. Lipoteichoic acids as a major virulence factor causing inflammatory responses via Toll⁃like receptor 2[J]. Arch Pharm Res, 2016,39(11):1519⁃1529. doi: 10.1007/s12272⁃016⁃0804⁃y.
|
[22] |
Mirmonsef P, Zariffard MR, Gilbert D, et al. Short⁃chain fatty acids induce pro⁃inflammatory cytokine production alone and in combination with toll⁃like receptor ligands[J]. Am J Reprod Immunol, 2012,67(5):391⁃400. doi: 10.1111/j.1600⁃0897.2011. 01089.x.
|
[23] |
Saito S, Okuno A, Cao DY, et al. Bacterial lipoteichoic acid attenuates Toll⁃like receptor dependent dendritic cells activation and inflammatory response[J]. Pathogens, 2020,9(10):825. doi: 10.3390/pathogens9100825.
|
[24] |
Syed AK, Reed TJ, Clark KL, et al. Staphlyococcus aureus phenol⁃soluble modulins stimulate the release of proinflammatory cytokines from keratinocytes and are required for induction of skin inflammation[J]. Infect Immun, 2015,83(9):3428⁃3437. doi: 10.1128/IAI.00401⁃15.
|
[25] |
Zheng Y, Liang H, Zhou M, et al. Skin bacterial structure of young females in China: the relationship between skin bacterial structure and facial skin types[J]. Exp Dermatol, 2021,30(10):1366⁃1374. doi: 10.1111/exd.14105.
|
[26] |
Dreno B, Martin R, Moyal D, et al. Skin microbiome and acne vulgaris: Staphylococcus, a new actor in acne[J]. Exp Dermatol, 2017,26(9):798⁃803. doi: 10.1111/exd.13296.
|
[27] |
Barnard E, Shi B, Kang D, et al. The balance of metagenomic elements shapes the skin microbiome in acne and health[J]. Sci Rep, 2016,6:39491. doi: 10.1038/srep39491.
|
[28] |
Nakatsuji T, Chen TH, Narala S, et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis[J]. Sci Transl Med, 2017,9(378):eaah4680. doi: 10.1126/scitranslmed.aah4680.
|
[29] |
Canovas J, Baldry M, Bojer MS, et al. Cross⁃talk between Staphylococcus aureus and other Staphylococcal Species via the agr quorum sensing system[J]. Front Microbiol, 2016,7:1733. doi: 10.3389/fmicb.2016.01733.
|
[30] |
Cau L, Williams MR, Butcher AM, et al. Staphylococcus epidermidis protease EcpA can be a deleterious component of the skin microbiome in atopic dermatitis[J]. J Allergy Clin Immunol, 2021,147(3):955⁃966.e16. doi: 10.1016/j.jaci.2020. 06.024.
|
[31] |
Bjerre RD, Bandier J, Skov L, et al. The role of the skin microbiome in atopic dermatitis: a systematic review[J]. Br J Dermatol, 2017,177(5):1272⁃1278. doi: 10.1111/bjd.15390.
|
[32] |
Hon KL, Tsang YC, Pong NH, et al. Exploring Staphylococcus epidermidis in atopic eczema: friend or foe?[J]. Clin Exp Dermatol, 2016,41(6):659⁃663. doi: 10.1111/ced.12866.
|
[33] |
Williams MR, Costa SK, Zaramela LS, et al. Quorum sensing between bacterial species on the skin protects against epidermal injury in atopic dermatitis[J]. Sci Transl Med, 2019,11(490)doi: 10.1126/scitranslmed.aat8329.
|
[34] |
Whitfeld M, Gunasingam N, Leow LJ, et al. Staphylococcus epidermidis: a possible role in the pustules of rosacea[J]. J Am Acad Dermatol, 2011,64(1):49⁃52. doi: 10.1016/j.jaad.2009.12. 036.
|
[35] |
Dahl MV, Ross AJ, Schlievert PM. Temperature regulates bacterial protein production: possible role in rosacea[J]. J Am Acad Dermatol, 2004,50(2):266⁃272. doi: 10.1016/j.jaad.2003. 05.005.
|
[36] |
Wang Z, Choi JE, Wu CC, et al. Skin commensal bacteria Staphylococcus epidermidis promote survival of melanocytes bearing UVB⁃induced DNA damage, while bacteria Propionibacterium acnes inhibit survival of melanocytes by increasing apoptosis[J]. Photodermatol Photoimmunol Photomed, 2018,34(6):405⁃414. doi: 10.1111/phpp.12411.
|
[37] |
Nakatsuji T, Chen TH, Butcher AM, et al. A commensal strain of Staphylococcus epidermidis protects against skin neoplasia[J]. Sci Adv, 2018,4(2):eaao4502. doi: 10.1126/sciadv.aao4502.
|
[38] |
Pedroza⁃Dávila U, Uribe⁃Alvarez C, Morales⁃García L, et al. Metabolism, ATP production and biofilm generation by Staphylococcus epidermidis in either respiratory or fermentative conditions[J]. AMB Express, 2020,10(1):31. doi: 10.1186/s13568⁃020⁃00966⁃z.
|
[39] |
Rasoul M, Rokhsareh M, Mohammad SM, et al. The human immune system against Staphylococcus epidermidis[J]. Crit Rev Immunol, 2019,39(3):151⁃163. doi: 10.1615/CritRevImmunol. 2019031282.
|
[40] |
Fredheim EG, Granslo HN, Flægstad T, et al. Staphylococcus epidermidis polysaccharide intercellular adhesin activates complement[J]. FEMS Immunol Med Microbiol, 2011,63(2):269⁃280. doi: 10.1111/j.1574⁃695X.2011.00854.x.
|
[41] |
Weiser J, Henke HA, Hector N, et al. Sub⁃inhibitory tigecycline concentrations induce extracellular matrix binding protein Embp dependent Staphylococcus epidermidis biofilm formation and immune evasion[J]. Int J Med Microbiol, 2016,306(6):471⁃478. doi: 10.1016/j.ijmm.2016.05.015.
|