[1] |
Zhang X, Cai L, Zhao S, et al. CX⁃F9, a novel RSK2 inhibitor, suppresses cutaneous melanoma cells proliferation and metastasis through regulating autophagy[J]. Biochem Pharmacol, 2019,168:14⁃25. doi: 10.1016/j.bcp.2019.06.014.
|
[2] |
Parmenter TJ, Kleinschmidt M, Kinross KM, et al. Response of BRAF⁃mutant melanoma to BRAF inhibition is mediated by a network of transcriptional regulators of glycolysis[J]. Cancer Discov, 2014,4(4):423⁃433. doi: 10.1158/2159⁃8290.CD⁃13⁃0440.
|
[3] |
高天文, 郭伟楠. 中国黑素瘤研究进展与新治疗策略[J]. 中华皮肤科杂志, 2021,54(1):27⁃32. doi: 10.35541/cjd.20200560.
|
[4] |
Khan A, Valli E, Lam H, et al. Targeting metabolic activity in high⁃risk neuroblastoma through Monocarboxylate Transporter 1 (MCT1) inhibition[J]. Oncogene, 2020,39(17):3555⁃3570. doi: 10.1038/s41388⁃020⁃1235⁃2.
|
[5] |
Kamenisch Y, Baban T, Schuller W, et al. UVA⁃irradiation induces melanoma invasion via the enhanced Warburg effect[J]. J Invest Dermatol, 2016,136(9):1866⁃1875. doi: 10.1016/j.jid.2016.02.815.
|
[6] |
Ubellacker JM, Tasdogan A, Ramesh V, et al. Lymph protects metastasizing melanoma cells from ferroptosis[J]. Nature, 2020,585(7823):113⁃118. doi: 10.1038/s41586⁃020⁃2623⁃z.
|
[7] |
Marzagalli M, Ebelt ND, Manuel ER. Unraveling the crosstalk between melanoma and immune cells in the tumor microenvironment[J]. Semin Cancer Biol, 2019,59:236⁃250. doi: 10.1016/j.semcancer.2019.08.002.
|
[8] |
Feichtinger RG, Lang R, Geilberger R, et al. Melanoma tumors exhibit a variable but distinct metabolic signature[J]. Exp Dermatol, 2018,27(2):204⁃207. doi: 10.1111/exd.13465.
|
[9] |
Scott DA, Richardson AD, Filipp FV, et al. Comparative metabolic flux profiling of melanoma cell lines: beyond the Warburg effect[J]. J Biol Chem, 2011,286(49):42626⁃42634. doi: 10.1074/jbc.M111.282046.
|
[10] |
Luís R, Brito C, Pojo M. Melanoma metabolism: cell survival and resistance to therapy[J]. Adv Exp Med Biol, 2020,1219:203⁃223. doi: 10.1007/978⁃3⁃030⁃34025⁃4_11.
|
[11] |
Haq R, Shoag J, Andreu⁃Perez P, et al. Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF[J]. Cancer Cell, 2013,23(3):302⁃315. doi: 10.1016/j.ccr.2013.02.003.
|
[12] |
Sensi M, Nicolini G, Petti C, et al. Mutually exclusive NRASQ61R and BRAFV600E mutations at the single⁃cell level in the same human melanoma[J]. Oncogene, 2006,25(24):3357⁃3364. doi: 10.1038/sj.onc.1209379.
|
[13] |
Chae YC, Vaira V, Caino MC, et al. Mitochondrial Akt regulation of hypoxic tumor reprogramming[J]. Cancer Cell, 2016,30(2):257⁃272. doi: 10.1016/j.ccell.2016.07.004.
|
[14] |
Neagu M. Metabolic traits in cutaneous melanoma[J]. Front Oncol, 2020,10:851. doi: 10.3389/fonc.2020.00851.
|
[15] |
Li Z, Liu J, Que L, et al. The immunoregulatory protein B7⁃H3 promotes aerobic glycolysis in oral squamous carcinoma via PI3K/Akt/mTOR pathway[J]. J Cancer, 2019,10(23):5770⁃5784. doi: 10.7150/jca.29838.
|
[16] |
Dang CV, Le A, Gao P. MYC⁃induced cancer cell energy metabolism and therapeutic opportunities[J]. Clin Cancer Res, 2009,15(21):6479⁃6483. doi: 10.1158/1078⁃0432.CCR⁃09⁃0889.
|
[17] |
Zeller KI, Jegga AG, Aronow BJ, et al. An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets[J]. Genome Biol, 2003,4(10):R69. doi: 10.1186/gb⁃2003⁃4⁃10⁃r69.
|
[18] |
Ruby KN, Liu CL, Li Z, et al. Diagnostic and prognostic value of glucose transporters in melanocytic lesions[J]. Melanoma Res, 2019,29(6):603⁃611. doi: 10.1097/CMR.0000000000000626.
|
[19] |
Koch A, Ebert EV, Seitz T, et al. Characterization of glycolysis⁃related gene expression in malignant melanoma[J]. Pathol Res Pract, 2020,216(1):152752. doi: 10.1016/j.prp.2019.152752.
|
[20] |
Koch A, Lang SA, Wild PJ, et al. Glucose transporter isoform 1 expression enhances metastasis of malignant melanoma cells[J]. Oncotarget, 2015,6(32):32748⁃32760. doi: 10.18632/oncotarget. 4977.
|
[21] |
Burián Z, Ladányi A, Barbai T, et al. Selective inhibition of HIF1α expression by ZnSO4 has antitumoral effects in human melanoma[J]. Pathol Oncol Res, 2020,26(2):673⁃679. doi: 10.1007/s12253⁃018⁃00573⁃1.
|
[22] |
Corazao⁃Rozas P, Guerreschi P, Jendoubi M, et al. Mitochondrial oxidative stress is the Achille′s heel of melanoma cells resistant to Braf⁃mutant inhibitor[J]. Oncotarget, 2013,4(11):1986⁃1998. doi: 10.18632/oncotarget.1420.
|
[23] |
Wang L, Leite de Oliveira R, Huijberts S, et al. An acquired vulnerability of drug⁃resistant melanoma with therapeutic potential[J]. Cell, 2018,173(6):1413⁃1425.e14. doi: 10.1016/j.cell.2018.04.012.
|
[24] |
Avagliano A, Fiume G, Pelagalli A, et al. Metabolic plasticity of melanoma cells and their crosstalk with tumor microenvironment[J]. Front Oncol, 2020,10:722. doi: 10.3389/fonc.2020.00722.
|
[25] |
Vashisht Gopal YN, Gammon S, Prasad R, et al. A novel mitochondrial inhibitor blocks MAPK Pathway and overcomes MAPK inhibitor resistance in melanoma[J]. Clin Cancer Res, 2019,25(21):6429⁃6442. doi: 10.1158/1078⁃0432.CCR⁃19⁃0836.
|
[26] |
Bizzozero L, Cazzato D, Cervia D, et al. Acid sphingomyelinase determines melanoma progression and metastatic behaviour via the microphtalmia⁃associated transcription factor signalling pathway[J]. Cell Death Differ, 2014,21(4):507⁃520. doi: 10. 1038/cdd.2013.173.
|
[27] |
Coazzoli M, Napoli A, Roux⁃Biejat P, et al. Acid sphingomyelinase downregulation enhances mitochondrial fusion and promotes oxidative metabolism in a mouse model of melanoma[J]. Cells, 2020,9(4):848. doi: 10.3390/cells9040848.
|
[28] |
Tasdogan A, Faubert B, Ramesh V, et al. Metabolic heterogeneity confers differences in melanoma metastatic potential[J]. Nature, 2020,577(7788):115⁃120. doi: 10.1038/s41586⁃019⁃1847⁃2.
|
[29] |
Kfoury A, Armaro M, Collodet C, et al. AMPK promotes survival of c⁃Myc⁃positive melanoma cells by suppressing oxidative stress[J]. EMBO J, 2018,37(5):e97673. doi: 10.15252/embj.201797673.
|
[30] |
Lee CK, Jeong SH, Jang C, et al. Tumor metastasis to lymph nodes requires YAP⁃dependent metabolic adaptation[J]. Science, 2019,363(6427):644⁃649. doi: 10.1126/science.aav0173.
|
[31] |
Magtanong L, Ko PJ, To M, et al. Exogenous monounsaturated fatty acids promote a ferroptosis⁃resistant cell state[J]. Cell Chem Biol, 2019,26(3):420⁃432.e9. doi: 10.1016/j.chembiol. 2018.11.016.
|
[32] |
Raica M, Jitariu AA, Cimpean AM. Lymphangiogenesis and anti⁃lymphangiogenesis in cutaneous melanoma[J]. Anticancer Res, 2016,36(9):4427⁃4435. doi: 10.21873/anticanres.10986.
|
[33] |
Garmy⁃Susini B, Avraamides CJ, Desgrosellier JS, et al. PI3Kα activates integrin α4β1 to establish a metastatic niche in lymph nodes[J]. Proc Natl Acad Sci U S A, 2013,110(22):9042⁃9047. doi: 10.1073/pnas.1219603110.
|
[34] |
Garmy⁃Susini B, Avraamides CJ, Schmid MC, et al. Integrin alpha4beta1 signaling is required for lymphangiogenesis and tumor metastasis[J]. Cancer Res, 2010,70(8):3042⁃3051. doi: 10.1158/0008⁃5472.CAN⁃09⁃3761.
|
[35] |
Cortez A, Josefsson A, McCarty G, et al. Evaluation of [(225)Ac]Ac⁃DOTA⁃anti⁃VLA⁃4 for targeted alpha therapy of metastatic melanoma[J]. Nucl Med Biol, 2020,88⁃89:62⁃72. doi: 10.1016/j.nucmedbio.2020.07.006.
|
[36] |
Baumann F, Leukel P, Doerfelt A, et al. Lactate promotes glioma migration by TGF⁃beta2⁃dependent regulation of matrix metalloproteinase⁃2[J]. Neuro Oncol, 2009,11(4):368⁃380. doi: 10.1215/15228517⁃2008⁃106.
|
[37] |
Jacobs SR, Herman CE, Maciver NJ, et al. Glucose uptake is limiting in T cell activation and requires CD28⁃mediated Akt⁃dependent and independent pathways[J]. J Immunol, 2008,180(7):4476⁃4486. doi: 10.4049/jimmunol.180.7.4476.
|
[38] |
Najjar YG, Menk AV, Sander C, et al. Tumor cell oxidative metabolism as a barrier to PD⁃1 blockade immunotherapy in melanoma[J]. JCI Insight, 2019,4(5):e124989. doi: 10.1172/jci.insight.124989.
|
[39] |
Kim SH, Roszik J, Grimm EA, et al. Impact of l⁃arginine metabolism on immune response and anticancer immunotherapy[J]. Front Oncol, 2018,8:67. doi: 10.3389/fonc.2018.00067.
|