[1] |
Hu X, Hu Y, Wu F, et al. Integration of single⁃cell multi⁃omics for gene regulatory network inference[J]. Comput Struct Biotechnol J, 2020,18:1925⁃1938. doi: 10.1016/j.csbj.2020.06. 033.
|
[2] |
Pratapa A, Jalihal AP, Law JN, et al. Benchmarking algorithms for gene regulatory network inference from single⁃cell transcriptomic data[J]. Nat Methods, 2020,17(2):147⁃154. doi: 10.1038/s41592⁃019⁃0690⁃6.
|
[3] |
朱容慧, 李巍. 单细胞RNA测序技术及其在皮肤病学研究中的应用[J]. 中华皮肤科杂志, 2019,52(7):506⁃509. doi: 10. 3760/cma.j.issn.0412⁃4030.2019.07.015.
|
[4] |
Puram SV, Tirosh I, Parikh AS, et al. Single⁃cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer[J]. Cell, 2017,171(7):1611⁃1624. doi: 10.1016/j.cell.2017.10.044.
|
[5] |
Mereu E, Lafzi A, Moutinho C, et al. Benchmarking single⁃cell RNA⁃sequencing protocols for cell atlas projects[J]. Nat Biotechnol, 2020,38(6):747⁃755. doi: 10.1038/s41587⁃020⁃0469⁃4.
|
[6] |
Lähnemann D, Köster J, Szczurek E, et al. Eleven grand challenges in single⁃cell data science[J]. Genome Biol, 2020,21(1):31. doi: 10.1186/s13059⁃020⁃1926⁃6.
|
[7] |
Savas P, Virassamy B, Ye C, et al. Single⁃cell profiling of breast cancer T cells reveals a tissue⁃resident memory subset associated with improved prognosis[J]. Nat Med, 2018,24(7):986⁃993. doi: 10.1038/s41591⁃018⁃0078⁃7.
|
[8] |
Mustachio LM, Roszik J. Opportunities for single⁃cell sequencing technologies and data science[J]. Cancers (Basel), 2020,12(11):3433. doi: 10.3390/cancers12113433.
|
[9] |
Zhang L, Yu X, Zheng L, et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer[J]. Nature, 2018,564(7735):268⁃272. doi: 10.1038/s41586⁃018⁃0694⁃x.
|
[10] |
Guo X, Zhang Y, Zheng L, et al. Global characterization of T cells in non⁃small⁃cell lung cancer by single⁃cell sequencing[J]. Nat Med, 2018,24(7):978⁃985. doi: 10.1038/s41591⁃018⁃0045⁃3.
|
[11] |
刘慧萍, 崔恒, 昌晓红. 单细胞测序技术在恶性肿瘤研究中的应用进展[J]. 中国肿瘤临床, 2020,47(7):365⁃368. doi: 10. 3969/j.issn.1000⁃8179.2020.07.323.
|
[12] |
Lin Z, Meng X, Wen J, et al. Intratumor heterogeneity correlates with reduced immune activity and worse survival in melanoma patients[J]. Front Oncol, 2020,10:596493. doi: 10.3389/fonc. 2020.596493.
|
[13] |
Gerber T, Willscher E, Loeffler⁃Wirth H, et al. Mapping heterogeneity in patient⁃derived melanoma cultures by single⁃cell RNA⁃seq[J]. Oncotarget, 2017,8(1):846⁃862. doi: 10. 18632/oncotarget.13666.
|
[14] |
Tirosh I, Izar B, Prakadan SM, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single⁃cell RNA⁃seq[J]. Science, 2016,352(6282):189⁃196. doi: 10.1126/science.aad0501.
|
[15] |
Gokuldass A, Draghi A, Papp K, et al. Qualitative analysis of tumor⁃infiltrating lymphocytes across human tumor types reveals a higher proportion of bystander CD8(+) T cells in non⁃melanoma cancers compared to melanoma[J]. Cancers (Basel), 2020,12(11):3344. doi: 10.3390/cancers12113344.
|
[16] |
Li H, van der Leun AM, Yofe I, et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma[J]. Cell, 2019,176(4):775⁃789.e18. doi: 10.1016/j.cell.2018.11.043.
|
[17] |
Carmona SJ, Siddiqui I, Bilous M, et al. Deciphering the transcriptomic landscape of tumor⁃infiltrating CD8 lymphocytes in B16 melanoma tumors with single⁃cell RNA⁃Seq[J]. Oncoimmunology, 2020,9(1):1737369. doi: 10.1080/2162402X. 2020.1737369.
|
[18] |
Davidson S, Efremova M, Riedel A, et al. Single⁃cell RNA sequencing reveals a dynamic stromal niche that supports tumor growth[J]. Cell Rep, 2020,31(7):107628. doi: 10.1016/j.celrep.2020.107628.
|
[19] |
Hirata E, Ishibashi K, Kohsaka S, et al. The brain microenvironment induces DNMT1 suppression and indolence of metastatic cancer cells[J]. iScience, 2020,23(9):101480. doi: 10.1016/j.isci.2020.101480.
|
[20] |
Wouters J, Kalender⁃Atak Z, Minnoye L, et al. Robust gene expression programs underlie recurrent cell states and phenotype switching in melanoma[J]. Nat Cell Biol, 2020,22(8):986⁃998. doi: 10.1038/s41556⁃020⁃0547⁃3.
|
[21] |
Li X, Karras P, Torres R, et al. Disseminated melanoma cells transdifferentiate into endothelial cells in intravascular niches at metastatic sites[J]. Cell Rep, 2020,31(11):107765. doi: 10. 1016/j.celrep.2020.107765.
|
[22] |
Hamid O, Robert C, Daud A, et al. Five⁃year survival outcomes for patients with advanced melanoma treated with pembrolizumab in KEYNOTE⁃001[J]. Ann Oncol, 2019,30(4):582⁃588. doi: 10.1093/annonc/mdz011.
|
[23] |
Dai WF, Beca JM, Croxford R, et al. Real⁃world comparative effectiveness of second⁃line ipilimumab for metastatic melanoma: a population⁃based cohort study in Ontario, Canada[J]. BMC Cancer, 2020,20(1):304. doi: 10.1186/s12885⁃020⁃06798⁃1.
|
[24] |
Helmink BA, Reddy SM, Gao J, et al. B cells and tertiary lymphoid structures promote immunotherapy response[J]. Nature, 2020,577(7791):549⁃555. doi: 10.1038/s41586⁃019⁃1922⁃8.
|
[25] |
Xiong D, Wang Y, You M. A gene expression signature of TREM2(hi) macrophages and γδ T cells predicts immunotherapy response[J]. Nat Commun, 2020,11(1):5084. doi: 10.1038/s41467⁃020⁃18546⁃x.
|
[26] |
Schetters S, Rodriguez E, Kruijssen L, et al. Monocyte⁃derived APCs are central to the response of PD1 checkpoint blockade and provide a therapeutic target for combination therapy[J]. J Immunother Cancer, 2020,8(2):e000588. doi: 10.1136/jitc⁃2020⁃000588.
|
[27] |
Kim K, Park S, Park SY, et al. Single⁃cell transcriptome analysis reveals TOX as a promoting factor for T cell exhaustion and a predictor for anti⁃PD⁃1 responses in human cancer[J]. Genome Med, 2020,12(1):22. doi: 10.1186/s13073⁃020⁃00722⁃9.
|
[28] |
Sade⁃Feldman M, Yizhak K, Bjorgaard SL, et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma[J]. Cell, 2018,175(4):998⁃1013.e20. doi: 10. 1016/j.cell.2018.10.038.
|
[29] |
Singer M, Wang C, Cong L, et al. A distinct gene module for dysfunction uncoupled from activation in tumor⁃infiltrating T cells[J]. Cell, 2016,166(6):1500⁃1511.e9. doi: 10.1016/j.cell. 2016.08.052.
|
[30] |
Nirschl CJ, Suárez⁃Fariñas M, Izar B, et al. IFNγ⁃dependent tissue⁃immune homeostasis is co⁃opted in the tumor microenvironment[J]. Cell, 2017,170(1):127⁃141.e15. doi: 10. 1016/j.cell.2017.06.016.
|
[31] |
Jerby⁃Arnon L, Shah P, Cuoco MS, et al. A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade[J]. Cell, 2018,175(4):984⁃997. doi: 10.1016/j.cell.2018.09.006.
|
[32] |
Shaffer SM, Dunagin MC, Torborg SR, et al. Rare cell variability and drug⁃induced reprogramming as a mode of cancer drug resistance[J]. Nature, 2017,546(7658):431⁃435. doi: 10.1038/nature22794.
|
[33] |
Rambow F, Rogiers A, Marin⁃Bejar O, et al. Toward minimal residual disease⁃directed therapy in melanoma[J]. Cell, 2018,174(4):843⁃855.e19. doi: 10.1016/j.cell.2018.06.025.
|
[34] |
Long JE, Wongchenko MJ, Nickles D, et al. Therapeutic resistance and susceptibility is shaped by cooperative multi⁃compartment tumor adaptation[J]. Cell Death Differ, 2019,26(11):2416⁃2429. doi: 10.1038/s41418⁃019⁃0310⁃0.
|
[35] |
Prieto⁃Fernández E, Egia⁃Mendikute L, Bosch A, et al. Hypoxia promotes syndecan⁃3 expression in the tumor microenvironment[J]. Front Immunol, 2020,11:586977. doi: 10.3389/fimmu.2020. 586977.
|
[36] |
Fairfax BP, Taylor CA, Watson RA, et al. Peripheral CD8(+) T cell characteristics associated with durable responses to immune checkpoint blockade in patients with metastatic melanoma[J]. Nat Med, 2020,26(2):193⁃199. doi: 10.1038/s41591⁃019⁃0734⁃6.
|
[37] |
Peng H, Zeng X, Zhou Y, et al. A component overlapping attribute clustering (COAC) algorithm for single⁃cell RNA sequencing data analysis and potential pathobiological implications[J/OL]. PLoS Comput Biol, 2019,15(2):e1006772. doi: 10.1371/journal.pcbi.1006772.
|
[38] |
Slyper M, Porter C, Ashenberg O, et al. A single⁃cell and single⁃nucleus RNA⁃Seq toolbox for fresh and frozen human tumors[J]. Nat Med, 2020,26(5):792⁃802. doi: 10.1038/s41591⁃020⁃0844⁃1.
|
[39] |
Tsoucas D, Dong R, Chen H, et al. Accurate estimation of cell⁃type composition from gene expression data[J]. Nat Commun, 2019,10(1):2975. doi: 10.1038/s41467⁃019⁃10802⁃z.
|
[40] |
Ho YJ, Anaparthy N, Molik D, et al. Single⁃cell RNA⁃seq analysis identifies markers of resistance to targeted BRAF inhibitors in melanoma cell populations[J]. Genome Res, 2018,28(9):1353⁃1363. doi: 10.1101/gr.234062.117.
|
[41] |
Cheng C, Easton J, Rosencrance C, et al. Latent cellular analysis robustly reveals subtle diversity in large⁃scale single⁃cell RNA⁃seq data[J]. Nucleic Acids Res, 2019,47(22):e143. doi: 10. 1093/nar/gkz826.
|
[42] |
Song Y, Xu X, Wang W, et al. Single cell transcriptomics: moving towards multi⁃omics[J]. Analyst, 2019,144(10):3172⁃3189. doi: 10.1039/c8an01852a.
|