[1] |
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron⁃dependent form of nonapoptotic cell death[J]. Cell, 2012,149(5):1060⁃1072. doi: 10.1016/j.cell.2012.03.042.
|
[2] |
Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron⁃dependent, nonapoptotic cell death in oncogenic⁃RAS⁃harboring cancer cells[J]. Chem Biol, 2008,15(3):234⁃245. doi: 10.1016/j.chembiol.2008.02.010.
|
[3] |
Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018[J]. Cell Death Differ, 2018,25(3):486⁃541. doi: 10.1038/s41418⁃017⁃0012⁃4.
|
[4] |
Liu M, Kong XY, Yao Y, et al. The critical role and molecular mechanisms of ferroptosis in antioxidant systems: a narrative review[J]. Ann Transl Med, 2022,10(6):368. doi: 10.21037/atm⁃21⁃6942.
|
[5] |
Conrad M, Pratt DA. The chemical basis of ferroptosis[J]. Nat Chem Biol, 2019,15:1137⁃1147. doi:10.1038/s41589⁃019⁃0408⁃1.
|
[6] |
Gao M, Fan K, Chen Y, et al. Understanding the mechanistic regulation of ferroptosis in cancer: gene matters[J]. J Genet Genomics, 2022:S1673⁃8527(22)00160⁃6. [2022⁃02⁃20]. doi: 10.1016/j.jgg.2022.06.002.
|
[7] |
Benboubker V, Boivin F, Dalle S, et al. Cancer cell phenotype plasticity as a driver of immune escape in melanoma[J]. Front Immunol, 2022,13:873116. doi: 10.3389/fimmu.2022.873116.
|
[8] |
Thier B, Zhao F, Stupia S, et al. Innate immune receptor signaling induces transient melanoma dedifferentiation while preserving immunogenicity[J]. J Immunother Cancer, 2022,10(6). doi: 10.1136/jitc⁃2021⁃003863.
|
[9] |
Riesenberg S, Groetchen A, Siddaway R, et al. MITF and c⁃Jun antagonism interconnects melanoma dedifferentiation with pro⁃inflammatory cytokine responsiveness and myeloid cell recruitment[J]. Nat Commun, 2015,6:8755. doi: 10.1038/ncomms9755.
|
[10] |
Tsoi J, Robert L, Paraiso K, et al. Multi⁃stage differentiation defines melanoma subtypes with differential vulnerability to drug⁃induced iron⁃dependent oxidative stress[J]. Cancer Cell, 2018,33(5):890⁃904.e5. doi: 10.1016/j.ccell.2018.03.017.
|
[11] |
Hanniford D, Ulloa⁃Morales A, Karz A, et al. Epigenetic silencing of CDR1as drives IGF2BP3⁃mediated melanoma invasion and metastasis[J]. Cancer Cell, 2020,37(1):55⁃70.e15. doi: 10.1016/j.ccell.2019.12.007.
|
[12] |
Sato M, Onuma K, Domon M, et al. Loss of the cystine/glutamate antiporter in melanoma abrogates tumor metastasis and markedly increases survival rates of mice[J]. Int J Cancer, 2020,147(11):3224⁃3235. doi: 10.1002/ijc.33262.
|
[13] |
Leary N, Walser S, He Y, et al. Melanoma⁃derived extracellular vesicles mediate lymphatic remodelling and impair tumour immunity in draining lymph nodes[J]. J Extracell Vesicles, 2022,11(2):e12197. doi: 10.1002/jev2.12197.
|
[14] |
Ubellacker JM, Tasdogan A, Ramesh V, et al. Lymph protects metastasizing melanoma cells from ferroptosis[J]. Nature, 2020,585(7823):113⁃118. doi: 10.1038/s41586⁃020⁃2623⁃z.
|
[15] |
de Groot E, Varghese S, Tan L, et al. Combined inhibition of HMGCoA reductase and mitochondrial complex I induces tumor regression of BRAF inhibitor⁃resistant melanomas[J]. Cancer Metab, 2022,10(1):6. doi: 10.1186/s40170⁃022⁃00281⁃0.
|
[16] |
Gentric G, Kieffer Y, Mieulet V, et al. PML⁃regulated mitochondrial metabolism enhances chemosensitivity in human ovarian cancers[J]. Cell Metab, 2019,29(1):156⁃173.e10. doi: 10.1016/j.cmet.2018.09.002.
|
[17] |
Gagliardi M, Cotella D, Santoro C, et al. Aldo⁃keto reductases protect metastatic melanoma from ER stress⁃independent ferroptosis[J]. Cell Death Dis, 2019,10(12):902. doi: 10.1038/s41419⁃019⁃2143⁃7.
|
[18] |
Osrodek M, Hartman ML, Czyz M. Physiologically relevant oxygen concentration (6% O(2)) as an important component of the microenvironment impacting melanoma phenotype and melanoma response to targeted therapeutics in vitro[J]. Int J Mol Sci, 2019,20(17):4203. doi: 10.3390/ijms20174203.
|
[19] |
Talebi A, Dehairs J, Rambow F, et al. Sustained SREBP⁃1⁃dependent lipogenesis as a key mediator of resistance to BRAF⁃targeted therapy[J]. Nat Commun, 2018,9(1):2500. doi: 10. 1038/s41467⁃018⁃04664⁃0.
|
[20] |
Viswanathan VS, Ryan MJ, Dhruv HD, et al. Dependency of a therapy⁃resistant state of cancer cells on a lipid peroxidase pathway[J]. Nature, 2017,547(7664):453⁃457. doi: 10.1038/nature23007.
|
[21] |
You JH, Lee J, Roh JL. Mitochondrial pyruvate carrier 1 regulates ferroptosis in drug⁃tolerant persister head and neck cancer cells via epithelial⁃mesenchymal transition[J]. Cancer Lett, 2021,507:40⁃54. doi: 10.1016/j.canlet.2021.03.013.
|
[22] |
Wang W, Green M, Choi JE, et al. CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy[J]. Nature, 2019,569(7755):270⁃274. doi: 10.1038/s41586⁃019⁃1170⁃y.
|
[23] |
Lang X, Green MD, Wang W, et al. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11[J]. Cancer Discov, 2019,9(12):1673⁃1685. doi: 10.1158/2159⁃8290.CD⁃19⁃0338.
|
[24] |
Jiang Z, Lim SO, Yan M, et al. TYRO3 induces anti⁃PD⁃1/PD⁃L1 therapy resistance by limiting innate immunity and tumoral ferroptosis[J]. J Clin Invest, 2021,131(8):e139439. doi: 10.1172/JCI139434.
|
[25] |
Zhu B, Tang L, Chen S, et al. Targeting the upstream transcriptional activator of PD⁃L1 as an alternative strategy in melanoma therapy[J]. Oncogene, 2018,37(36):4941⁃4954. doi: 10.1038/s41388⁃018⁃0314⁃0.
|
[26] |
Song R, Li T, Ye J, et al. Acidity⁃activatable dynamic nanoparticles boosting ferroptotic cell death for immunotherapy of cancer[J]. Adv Mater, 2021,33(31):e2101155. doi: 10.1002/adma.202101155.
|
[27] |
Xu C, Chen H. A ferroptosis⁃related gene model predicts prognosis and immune microenvironment for cutaneous melanoma[J]. Front Genet, 2021,12:697043. doi: 10.3389/fgene.2021.697043.
|
[28] |
Gao M, Monian P, Quadri N, et al. Glutaminolysis and transferrin regulate ferroptosis[J]. Mol Cell, 2015,59(2):298⁃308. doi: 10.1016/j.molcel.2015.06.011.
|
[29] |
Luo M, Wu L, Zhang K, et al. MiR⁃137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma[J]. Cell Death Differ, 2018,25(8):1457⁃1472. doi: 10.1038/s41418⁃017⁃0053⁃8.
|
[30] |
Zhang K, Wu L, Zhang P, et al. MiR⁃9 regulates ferroptosis by targeting glutamic⁃oxaloacetic transaminase GOT1 in melanoma[J]. Mol Carcinog, 2018,57(11):1566⁃1576. doi: 10.1002/mc. 22878.
|
[31] |
Liao Y, Jia X, Ren Y, et al. Suppressive role of microRNA⁃130b⁃3p in ferroptosis in melanoma cells correlates with DKK1 inhibition and Nrf2⁃HO⁃1 pathway activation[J]. Hum Cell, 2021,34(5):1532⁃1544. doi: 10.1007/s13577⁃021⁃00557⁃5.
|
[32] |
王潇玉, 田阳子, 吴振杰, 等. MiR⁃210在黑素瘤细胞铁死亡中的作用和机制研究[J]. 现代生物医学进展, 2021,21(10):1818⁃1823. doi: 10.13241/j.cnki.pmb.2021.10.004.
|
[33] |
Yagoda N, von Rechenberg M, Zaganjor E, et al. RAS⁃RAF⁃MEK⁃dependent oxidative cell death involving voltage⁃dependent anion channels[J]. Nature, 2007,447(7146):864⁃868. doi: 10. 1038/nature05859.
|
[34] |
Yang Y, Luo M, Zhang K, et al. Nedd4 ubiquitylates VDAC2/3 to suppress erastin⁃induced ferroptosis in melanoma[J]. Nat Commun, 2020,11(1):433. doi: 10.1038/s41467⁃020⁃14324⁃x.
|