中华皮肤科杂志 ›› 2022, Vol. 55 ›› Issue (7): 633-636.doi: 10.35541/cjd.20200431
施雁庭1 黎皓2 郑捷1 曹华1
收稿日期:
2020-05-06
修回日期:
2021-01-30
发布日期:
2022-07-05
通讯作者:
曹华
E-mail:drcaohua@126.com
基金资助:
Shih Yanting1, Li Hao2, Zheng Jie1, Cao Hua1
Received:
2020-05-06
Revised:
2021-01-30
Published:
2022-07-05
Contact:
Cao Hua
E-mail:drcaohua@126.com
Supported by:
摘要: 【摘要】 程序性细胞死亡蛋白(PD-1)与其配体(PD-L1)特异性结合后,具有共抑制/共刺激的免疫调控作用,可抑制T细胞活化、增殖及细胞因子分泌,参与肿瘤免疫、自身免疫及免疫耐受等。本文综述PD-1/PD-L1信号通路的组成结构、调控机制,以助于理解特发性炎症性肌病合并恶性肿瘤的免疫机制,寻找潜在的治疗靶点和诊断策略。
施雁庭 黎皓 郑捷 曹华. 程序性细胞死亡蛋白1及其配体通路在特发性炎症性肌病中的研究进展[J]. 中华皮肤科杂志, 2022,55(7):633-636. doi:10.35541/cjd.20200431
Shih Yanting, Li Hao, Zheng Jie, Cao Hua. Programmed death-1/programmed death ligand-1 signaling pathway in idiopathic inflammatory myopathies[J]. Chinese Journal of Dermatology, 2022, 55(7): 633-636.doi:10.35541/cjd.20200431
[1] | Thompson C, Piguet V, Choy E. The pathogenesis of dermatomyositis[J]. Br J Dermatol, 2018,179(6):1256⁃1262. doi: 10.1111/bjd.15607. |
[2] | Wiendl H, Mitsdoerffer M, Schneider D, et al. Human muscle cells express a B7⁃related molecule, B7⁃H1, with strong negative immune regulatory potential: a novel mechanism of counterbalancing the immune attack in idiopathic inflammatory myopathies[J]. FASEB J, 2003,17(13):1892⁃1894. doi: 10. 1096/fj.03⁃0039fje. |
[3] | Xiaoyu D, Yunxia W, Qi F, et al. Expression of B7⁃homolog 1 in Polymyositis[J]. Ann Clin Lab Sci, 2011,41(2):154⁃160. |
[4] | Chen H, Peng Q, Yang H, et al. Increased levels of soluble programmed death ligand 1 associate with malignancy in patients with dermatomyositis[J]. J Rheumatol, 2018,45(6):835⁃840. doi: 10.3899/jrheum.170544. |
[5] | Schildberg FA, Klein SR, Freeman GJ, et al. Coinhibitory pathways in the B7⁃CD28 ligand⁃receptor family[J]. Immunity, 2016,44(5):955⁃972. doi: 10.1016/j.immuni.2016.05.002. |
[6] | Chen L, Flies DB. Molecular mechanisms of T cell co⁃stimulation and co⁃inhibition[J]. Nat Rev Immunol, 2013,13(4):227⁃242. doi: 10.1038/nri3405. |
[7] | Francisco LM, Sage PT, Sharpe AH. The PD⁃1 pathway in tolerance and autoimmunity[J]. Immunol Rev, 2010,236:219⁃242. doi: 10.1111/j.1600⁃065X.2010.00923.x. |
[8] | Kuol N, Stojanovska L, Nurgali K, et al. PD⁃1/PD⁃L1 in disease[J]. Immunotherapy, 2018,10(2):149⁃160. doi: 10.2217/imt⁃2017⁃0120. |
[9] | Lind H, Gameiro SR, Jochems C, et al. Dual targeting of TGF⁃β and PD⁃L1 via a bifunctional anti⁃PD⁃L1/TGF⁃βRII agent: status of preclinical and clinical advances[J]. J Immunother Cancer, 2020,8(1). doi: 10.1136/jitc⁃2019⁃000433. |
[10] | Park BV, Freeman ZT, Ghasemzadeh A, et al. TGFβ1⁃mediated SMAD3 enhances PD⁃1 expression on antigen⁃specific T cells in cancer[J]. Cancer Discov, 2016,6(12):1366⁃1381. doi: 10.1158/2159⁃8290.CD⁃15⁃1347. |
[11] | Fantini MC, Becker C, Monteleone G, et al. Cutting edge: TGF⁃beta induces a regulatory phenotype in CD4+CD25- T cells through Foxp3 induction and down⁃regulation of Smad7[J]. J Immunol, 2004,172(9):5149⁃5153. doi: 10.4049/jimmunol.172. 9.5149. |
[12] | Garo LP, Ajay AK, Fujiwara M, et al. Smad7 controls immunoregulatory PDL2/1⁃PD1 signaling in intestinal inflammation and autoimmunity[J]. Cell Rep, 2019,28(13):3353⁃3366.e5. doi: 10.1016/j.celrep.2019.07.065. |
[13] | Nishimura H, Nose M, Hiai H, et al. Development of lupus⁃like autoimmune diseases by disruption of the PD⁃1 gene encoding an ITIM motif⁃carrying immunoreceptor[J]. Immunity, 1999,11(2):141⁃151. doi: 10.1016/s1074⁃7613(00)80089⁃8. |
[14] | Greisen SR, Rasmussen TK, Stengaard⁃Pedersen K, et al. Increased soluble programmed death⁃1 (sPD⁃1) is associated with disease activity and radiographic progression in early rheumatoid arthritis[J]. Scand J Rheumatol, 2014,43(2):101⁃108. doi: 10.3109/03009742.2013.823517. |
[15] | Kobayashi M, Kawano S, Hatachi S, et al. Enhanced expression of programmed death⁃1 (PD⁃1)/PD⁃L1 in salivary glands of patients with Sjögren′s syndrome[J]. J Rheumatol, 2005,32(11):2156⁃2163. |
[16] | Dani L, Ian Che W, Lundberg IE, et al. Overall and site⁃specific cancer before and after diagnosis of idiopathic inflammatory myopathies: a nationwide study 2002-2016[J]. Semin Arthritis Rheum, 2021,51(1):331⁃337. doi: 10.1016/j.semarthrit.2020.12. 009. |
[17] | Hsu JL, Liao MF, Chu CC, et al. Reappraisal of the incidence, various types and risk factors of malignancies in patients with dermatomyositis and polymyositis in Taiwan[J]. Sci Rep, 2021,11(1):4545. doi: 10.1038/s41598⁃021⁃83729⁃5. |
[18] | Zidane M, Dressler C, Nast A, et al. Incidences of different cancer types in dermatomyositis, polymyositis and dermatopolymyositis: results of a registry analysis[J]. Br J Dermatol, 2020,183(1):186⁃188. doi: 10.1111/bjd.18948. |
[19] | Allenbach Y, Keraen J, Bouvier AM, et al. High risk of cancer in autoimmune necrotizing myopathies: usefulness of myositis specific antibody[J]. Brain, 2016,139(Pt 8):2131⁃2135. doi: 10.1093/brain/aww054. |
[20] | McHugh NJ, Tansley SL. Autoantibodies in myositis[J]. Nat Rev Rheumatol, 2018,14(5):290⁃302. doi: 10.1038/nrrheum.2018.56. |
[21] | De Vooght J, Vulsteke JB, De Haes P, et al. Anti⁃TIF1⁃γ autoantibodies: warning lights of a tumour autoantigen[J]. Rheumatology (Oxford), 2020,59(3):469⁃477. doi: 10.1093/rheumatology/kez572. |
[22] | Aussy A, Boyer O, Cordel N. Dermatomyositis and immune⁃mediated necrotizing myopathies: a window on autoimmunity and cancer[J]. Front Immunol, 2017,8:992. doi: 10.3389/fimmu.2017.00992. |
[23] | Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity′s roles in cancer suppression and promotion[J]. Science, 2011,331(6024):1565⁃1570. doi: 10.1126/science. 1203486. |
[24] | Labrador⁃Horrillo M, Selva⁃O′Callaghan A. Cancer⁃associated dermatomyositis: does the PD⁃1 checkpoint pathway play a role?[J]. J Rheumatol, 2018,45(6):731⁃732. doi: 10.3899/jrheum. 180007. |
[25] | Knauss S, Preusse C, Allenbach Y, et al. PD1 pathway in immune⁃mediated myopathies: pathogenesis of dysfunctional T cells revisited[J]. Neurol Neuroimmunol Neuroinflamm, 2019,6(3):e558. doi: 10.1212/NXI.0000000000000558. |
[26] | Pinal⁃Fernandez I, Ferrer⁃Fabregas B, Trallero⁃Araguas E, et al. Tumour TIF1 mutations and loss of heterozygosity related to cancer⁃associated myositis[J]. Rheumatology (Oxford), 2018,57(2):388⁃396. doi: 10.1093/rheumatology/kex413. |
[27] | Yu C, Ding Z, Liang H, et al. The roles of TIF1γ in cancer[J]. Front Oncol, 2019,9:979. doi: 10.3389/fonc.2019.00979. |
[28] | Wang L, Yang H, Lei Z, et al. Repression of TIF1γ by SOX2 promotes TGF⁃β⁃induced epithelial⁃mesenchymal transition in non⁃small⁃cell lung cancer[J]. Oncogene, 2016,35(7):867⁃877. doi: 10.1038/onc.2015.141. |
[29] | Waldman R, DeWane ME, Lu J. Dermatomyositis: diagnosis and treatment[J]. J Am Acad Dermatol, 2020,82(2):283⁃296. doi: 10.1016/j.jaad.2019.05.105. |
[30] | Abril⁃Rodriguez G, Ribas A. SnapShot: immune checkpoint inhibitors[J]. Cancer Cell, 2017,31(6):848⁃848.e1. doi: 10. 1016/j.ccell.2017.05.010. |
[31] | Shah M, Tayar JH, Abdel⁃Wahab N, et al. Myositis as an adverse event of immune checkpoint blockade for cancer therapy[J]. Semin Arthritis Rheum, 2019,48(4):736⁃740. doi: 10.1016/j.semarthrit.2018.05.006. |
[32] | Fazel M, Jedlowski PM. Severe myositis, myocarditis, and myasthenia gravis with elevated anti⁃striated muscle antibody following single dose of ipilimumab⁃nivolumab therapy in a patient with metastatic melanoma[J]. Case Reports Immunol, 2019,2019:2539493. doi: 10.1155/2019/2539493. |
[33] | Marano AL, Clarke JM, Morse MA, et al. Subacute cutaneous lupus erythematosus and dermatomyositis associated with anti⁃programmed cell death 1 therapy[J]. Br J Dermatol, 2019,181(3):580⁃583. doi: 10.1111/bjd.17245. |
[34] | Blank CU, Haining WN, Held W, et al. Defining ′T cell exhaustion′[J]. Nat Rev Immunol, 2019,19(11):665⁃674. doi: 10.1038/s41577⁃019⁃0221⁃9. |
[1] | 张诗敏 胡赟赟 赵肖庆 杜联军 曹华 郑捷. 影像技术在皮肌炎诊断和病情评估中的研究进展[J]. 中华皮肤科杂志, 2022, 55(7): 637-640. |
[2] | 张宁 李舒 李敬. 免疫检查点抑制剂和靶向药物辅助治疗可切除黑素瘤疗效的网状Meta分析[J]. 中华皮肤科杂志, 2022, 55(7): 603-609. |
[3] | 冯华 高英姝 李清 孙联文. 细胞力学在皮肤科的研究进展[J]. 中华皮肤科杂志, 2022, 55(7): 641-644. |
[4] | 夏利 杨林洪 许丽 孙文国 于亮 翟婉芳 王东霞 邝小湾. 微小RNA-181b-5p对皮肤黑素瘤细胞株增殖和侵袭的作用及机制研究[J]. 中华皮肤科杂志, 2022, 55(7): 588-595. |
[5] | 中国医师协会皮肤科医师分会自身免疫病专业委员会 . 【开放获取】环孢素治疗免疫相关性皮肤病专家建议[J]. 中华皮肤科杂志, 2022, 55(6): 471-479. |
[6] | 刘影 易秀莉 叶竹标 高天文 朱冠男. 源于中国人转移性黑素瘤细胞株的建立及其生物学特性研究[J]. 中华皮肤科杂志, 2022, 55(5): 375-381. |
[7] | 高妮 刘宇 王雷 刘玲 高天文 李凯. 孤立性真皮黑素瘤5例临床及组织病理分析[J]. 中华皮肤科杂志, 2022, 55(5): 408-410. |
[8] | 魏凤 张晓光 韩文瑞 荣蓉 王丽娟 赵伊珂 李艳玲. 【开放获取】局部皮瓣联合修复鼻及鼻周非黑素瘤皮肤癌Mohs显微外科手术后较大缺损11例效果分析[J]. 中华皮肤科杂志, 2022, 0(4): 20210119-e20210119. |
[9] | 李艳 张选奋 张文芳 . 基于Wnt/β联蛋白信号通路探讨EphB2抑制剂对皮肤鳞状细胞癌的影响及作用机制[J]. 中华皮肤科杂志, 2022, 55(4): 321-328. |
[10] | 徐聪聪 陈浩. PI3K/Akt/mTOR信号通路在皮肤鳞状细胞癌中的研究进展[J]. 中华皮肤科杂志, 2022, 55(3): 264-267. |
[11] | 吕玲 吕小岩. 皮肌炎伴发恶性肿瘤的研究进展[J]. 中华皮肤科杂志, 2022, 55(3): 276-279. |
[12] | 岳超, 罗显雁, 王涛, 段梦莹, 戴叶芹, 彭建中. 纵向切口横向缝合法在下眼睑缘五边形全层缺损修复中的应用[J]. 中华皮肤科杂志, 2022, 55(2): 159-161. |
[13] | 葛新红, 焦亚宁, 葛明昊, 马迎东, 石越, 王禹, 刘玲玲. 沉默信息调节因子1、3和缺氧诱导因子1α在皮肤鳞状细胞癌组织和细胞中的表达[J]. 中华皮肤科杂志, 2022, 55(2): 116-122. |
[14] | 包诗杰, 程杨, 晏莹, 范昉, 高婷婷, 冯小兰, 郑亮, 雷卫, 黄琴斯, 张伟明, 周小勇. 人免疫球蛋白和重组人Ⅱ型肿瘤坏死因子受体-抗体融合蛋白治疗中毒性表皮坏死松解症的对比研究[J]. 中华皮肤科杂志, 2022, 55(2): 153-156. |
[15] | 闫娜, 杨丽娟, 赵婵, 刘燕, 曾维惠, 耿松梅, 谭宣丰. 皮下组织蒂隧道插入皮瓣在鼻翼缺损修复中的应用[J]. 中华皮肤科杂志, 2022, 55(2): 161-163. |
|