Chinese Journal of Dermatology ›› 2024, e20230241.doi: 10.35541/cjd.20230241
• Reviews • Previous Articles Next Articles
Liu Yingying, Deng Danqi
Received:2023-04-27
Revised:2024-01-13
Online:2024-01-29
Published:2024-05-17
Contact:
Deng Danqi
E-mail:danqid128@sina.com
Liu Yingying, Deng Danqi. Correlations between skin microbiome and skin tumors[J]. Chinese Journal of Dermatology,2024,e20230241. doi:10.35541/cjd.20230241
| [1] | Richardson BN, Lin J, Buchwald ZS, et al. Skin microbiome and treatment⁃related skin toxicities in patients with cancer: a mini⁃review[J]. Front Oncol, 2022,12:924849. doi: 10.3389/fonc. 2022.924849. |
| [2] | Kapoor B, Gulati M, Rani P, et al. Psoriasis: interplay between dysbiosis and host immune system[J]. Autoimmun Rev, 2022,21(11):103169. doi: 10.1016/j.autrev.2022.103169. |
| [3] | Schneider AM, Nolan ZT, Banerjee K, et al. Evolution of the facial skin microbiome during puberty in normal and acne skin[J]. J Eur Acad Dermatol Venereol, 2023,37(1):166⁃175. doi: 10.1111/jdv.18616. |
| [4] | Gao YW, Yao X, Yang XY. Application of bioengineered bacteria in allergic diseases[J]. Int J Dermatol Venerol, 2023,6(1):43⁃48. doi: 10.1097/JD9.0000000000000242. |
| [5] | Łyko M, Jankowska⁃Konsur A. The skin microbiome in cutaneous T⁃cell lymphomas (CTCL)⁃a narrative review[J]. Pathogens, 2022,11(8):935. doi: 10.3390/pathogens11080935. |
| [6] | Jost M, Wehkamp U. The skin microbiome and influencing elements in cutaneous T⁃cell lymphomas[J]. Cancers (Basel), 2022,14(5):1324. doi: 10.3390/cancers14051324. |
| [7] | 郑娜娜, 曾荣, 陶盈凯, 等. 环状RNA与皮肤肿瘤相关性研究进展[J]. 中华皮肤科杂志, 2023,e20210893. doi: 10.35541/cjd.20210893. |
| [8] | Squarzanti DF, Zavattaro E, Pizzimenti S, et al. Non⁃melanoma skin cancer: news from microbiota research[J]. Crit Rev Microbiol, 2020,46(4):433⁃449. doi: 10.1080/1040841X.2020. 1794792. |
| [9] | Parida S, Sharma D. The microbiome and cancer: creating friendly neighborhoods and removing the foes within[J]. Cancer Res, 2021,81(4):790⁃800. doi: 10.1158/0008⁃5472.CAN⁃20⁃2629. |
| [10] | Kennedy MS, Chang EB. The microbiome: composition and locations[J]. Prog Mol Biol Transl Sci, 2020,176:1⁃42. doi: 10. 1016/bs.pmbts.2020.08.013. |
| [11] | Luna PC. Skin microbiome as years go by[J]. Am J Clin Dermatol, 2020,21(Suppl 1):12⁃17. doi: 10.1007/s40257⁃020⁃00549⁃5. |
| [12] | Byrd AL, Belkaid Y, Segre JA. The human skin microbiome[J]. Nat Rev Microbiol, 2018,16(3):143⁃155. doi: 10.1038/nrmicro. 2017.157. |
| [13] | 闫慧敏, 姜薇. 人类皮肤微生物群和皮肤疾病[J]. 中国皮肤性病学杂志, 2015,29(12):1292⁃1294. doi: 10.13735/j.cjdv. 1001⁃7089.201412052. |
| [14] | Wood D, Lachner N, Tan JM, et al. A natural history of actinic keratosis and cutaneous squamous cell carcinoma microbiomes[J]. mBio, 2018,9(5):e01432⁃18. doi: 10.1128/mBio.01432⁃18. |
| [15] | Blümel E, Munir Ahmad S, Nastasi C, et al. Staphylococcus aureus alpha⁃toxin inhibits CD8+ T cell⁃mediated killing of cancer cells in cutaneous T⁃cell lymphoma[J]. Oncoimmunology, 2020,9(1):1751561. doi: 10.1080/2162402X.2020.1751561. |
| [16] | Nakatsuji T, Chen TH, Butcher AM, et al. A commensal strain of Staphylococcus epidermidis protects against skin neoplasia[J]. Sci Adv, 2018,4(2):eaao4502. doi: 10.1126/sciadv.aao4502. |
| [17] | Mizuhashi S, Kajihara I, Sawamura S, et al. Skin microbiome in acral melanoma: Corynebacterium is associated with advanced melanoma[J]. J Dermatol, 2021,48(1):e15⁃e16. doi: 10.1111/1346⁃8138.15633. |
| [18] | Mrázek J, Mekadim C, Kučerová P, et al. Melanoma⁃related changes in skin microbiome[J]. Folia Microbiol (Praha), 2019,64(3):435⁃442. doi: 10.1007/s12223⁃018⁃00670⁃3. |
| [19] | Kumar P, Brazel D, DeRogatis J, et al. The cure from within? A review of the microbiome and diet in melanoma[J]. Cancer Metastasis Rev, 2022,41(2):261⁃280. doi: 10.1007/s10555⁃022⁃10029⁃3. |
| [20] | Gluud M, Pallesen E, Buus TB, et al. Malignant T cells induce skin barrier defects through cytokine⁃mediated JAK/STAT signaling in cutaneous T⁃cell lymphoma[J]. Blood, 2023,141(2):180⁃193. doi: 10.1182/blood.2022016690. |
| [21] | Edslev SM, Agner T, Andersen PS. Skin microbiome in atopic dermatitis[J]. Acta Derm Venereol, 2020,100(12):adv00164. doi: 10.2340/00015555⁃3514. |
| [22] | Bosman ES, Albert AY, Lui H, et al. Skin exposure to narrow band ultraviolet (UVB) light modulates the human intestinal microbiome[J]. Front Microbiol, 2019,10:2410. doi: 10.3389/fmicb.2019.02410. |
| [23] | Wang X,Koffi PF,English OF,et al. Staphylococcus aureus extracellular vesicles: a story of toxicity and the stress of 2020 [J]. Toxins (Basel), 2021,13(2):75. doi: 10.3390/toxins13020075. |
| [24] | Krueger A,Mohamed A,Kolka CM,et al. Skin cancer⁃associated S. aureus strains can induce DNA damage in human keratinocytes by downregulating DNA repair and promoting oxidative stress[J]. Cancers (Basel), 2022,14(9):2143. doi:10.3390/cancers14092143. |
| [25] | Quintero⁃Fabián S, Arreola R, Becerril⁃Villanueva E, et al. Role of matrix metalloproteinases in angiogenesis and cancer[J]. Front Oncol, 2019,9:1370. doi: 10.3389/fonc.2019.01370. |
| [26] | Nauroy P, Nyström A. Kallikreins: Essential epidermal messengers for regulation of the skin microenvironment during homeostasis, repair and disease[J]. Matrix Biol Plus, 2020,6⁃7:100019. doi: 10.1016/j.mbplus.2019.100019. |
| [27] | Krueger A, Zaugg J, Chisholm S, et al. Secreted toxins from Staphylococcus aureus strains isolated from keratinocyte skin cancers mediate pro⁃tumorigenic inflammatory responses in the skin[J]. Front Microbiol, 2021,12:789042. doi: 10.3389/fmicb. 2021.789042. |
| [28] | Duan T,Du Y,Xing C,et al. Toll⁃like receptor signaling and its role in cell⁃mediated immunity[J]. Front Immunol, 2022,13:812774. doi:10.3389/fimmu.2022.812774. |
| [29] | Blohm⁃Mangone K, Burkett NB, Tahsin S, et al. Pharmacological TLR4 antagonism using topical resatorvid blocks solar UV⁃induced skin tumorigenesis in SKH⁃1 mice[J]. Cancer Prev Res (Phila), 2018,11(5):265⁃278. doi: 10.1158/1940⁃6207.CAPR⁃17⁃0349. |
| [30] | Mann JE, Ludwig ML, Kulkarni A, et al. Microbe⁃mediated activation of Toll⁃like receptor 2 drives PDL1 expression in HNSCC[J]. Cancers (Basel), 2021,13(19):4782. doi: 10.3390/cancers13194782. |
| [31] | Kiatsurayanon C, Ogawa H, Niyonsaba F. The role of host defense peptide human β⁃defensins in the maintenance of skin barriers[J]. Curr Pharm Des, 2018,24(10):1092⁃1099. doi: 10. 2174/1381612824666180327164445. |
| [32] | Madhusudhan N,Pausan MR,Halwachs B,et al. Molecular profiling of keratinocyte skin tumors links Staphylococcus aureus overabundance and increased human β⁃defensin⁃2 expression to growth promotion of squamous cell carcinoma [J]. Cancers (Basel), 2020,12(3):541. doi: 10.3390/cancers12030541. |
| [33] | Nakagawa S, Matsumoto M, Katayama Y, et al. Staphylococcus aureus virulent PSMα peptides induce keratinocyte alarmin release to orchestrate IL⁃17⁃dependent skin inflammation[J]. Cell Host Microbe, 2017,22(5):667⁃677.e5. doi: 10.1016/j.chom. 2017.10.008. |
| [34] | Ridaura VK, Bouladoux N, Claesen J, et al. Contextual control of skin immunity and inflammation by Corynebacterium[J]. J Exp Med, 2018,215(3):785⁃799. doi: 10.1084/jem.20171079. |
| [35] | Sakamoto R, Kajihara I, Mijiddorj T, et al. Existence of Staphylococcus aureus correlates with the progression of extramammary Paget′s disease: potential involvement of interleukin⁃17 and M2⁃like macrophage polarization[J]. Eur J Dermatol, 2021,31(1):48⁃54. doi: 10.1684/ejd.2021.3972. |
| [36] | Willerslev⁃Olsen A, Krejsgaard T, Lindahl LM, et al. Staphylococcal enterotoxin A (SEA) stimulates STAT3 activation and IL⁃17 expression in cutaneous T⁃cell lymphoma[J]. Blood, 2016,127(10):1287⁃1296. doi: 10.1182/blood⁃2015⁃08⁃662353. |
| [37] | Willerslev⁃Olsen A, Gjerdrum L, Lindahl LM, et al. Staphylococcus aureus induces signal transducer and activator of transcription 5⁃dependent miR⁃155 expression in cutaneous T⁃cell lymphoma[J]. J Invest Dermatol, 2021,141(10):2449⁃2458. doi: 10.1016/j.jid.2021.01.038. |
| [38] | Lindahl LM, Willerslev⁃Olsen A, Gjerdrum L, et al. Antibiotics inhibit tumor and disease activity in cutaneous T⁃cell lymphoma[J]. Blood, 2019,134(13):1072⁃1083. doi: 10.1182/blood.2018 888107. |
| [39] | Blümel E, Willerslev⁃Olsen A, Gluud M, et al. Staphylococcal alpha⁃toxin tilts the balance between malignant and non⁃malignant CD4+ T cells in cutaneous T⁃cell lymphoma[J]. Oncoimmunology, 2019,8(11):e1641387. doi: 10.1080/2162402X. 2019.1641387. |
| [40] | Glatthardt T,Campos JC de M,Chamon RC,et al. Small molecules produced by commensal Staphylococcus epidermidis disrupt formation of biofilms by staphylococcus aureus [J]. Appl Environ Microbiol, 2020,86(5):e02539⁃19. doi:10.1128/AEM. 02539⁃19. |
| [41] | Wang Z, Choi JE, Wu CC, et al. Skin commensal bacteria Staphylococcus epidermidis promote survival of melanocytes bearing UVB⁃induced DNA damage, while bacteria Propionibacterium acnes inhibit survival of melanocytes by increasing apoptosis[J]. Photodermatol Photoimmunol Photomed, 2018,34(6):405⁃414. doi: 10.1111/phpp.12411. |
| [42] | Li H, Goh BN, Teh WK, et al. Skin commensal Malassezia globosa secreted protease attenuates Staphylococcus aureus biofilm formation[J]. J Invest Dermatol, 2018,138(5):1137⁃1145. doi: 10.1016/j.jid.2017.11.034. |
| [43] | Wood DLA,Lachner N,Tan J⁃M,et al. A natural history of actinic keratosis and cutaneous squamous cell carcinoma microbiomes[J]. mBio, 2018,9(5):e01432⁃18. doi: 10.1128/mBio.01432⁃18. |
| [44] | Sato Y, Fujimura T, Tanita K, et al. Malassezia⁃derived aryl hydrocarbon receptor ligands enhance the CCL20/Th17/soluble CD163 pathogenic axis in extra⁃mammary Paget′s disease[J]. Exp Dermatol, 2019,28(8):933⁃939. doi: 10.1111/exd.13944. |
| [45] | Friedrich AD, Campo VE, Cela EM, et al. Oral administration of lipoteichoic acid from Lactobacillus rhamnosus GG overcomes UVB⁃induced immunosuppression and impairs skin tumor growth in mice[J]. Eur J Immunol, 2019,49(11):2095⁃2102. doi: 10.1002/eji.201848024. |
| [46] | Kianmehr S, Jahani M, Moazzen N, et al. The potential of probiotics for treating skin disorders: a concise review[J]. Curr Pharm Biotechnol, 2022,23(15):1851⁃1863. doi: 10.2174/138920 1023666220411090301. |
| [47] | Lizardo M,Magalhães RM,Tavaria FK. Probiotic adhesion to skin keratinocytes and underlying mechanisms [J]. Biology (Basel), 2022,11(9):1372. doi:10.3390/biology11091372. |
| [48] | Petrov A, Ćorović M, Milivojević A, et al. Prebiotic effect of galacto⁃oligosaccharides on the skin microbiota and determination of their diffusion properties[J]. Int J Cosmet Sci, 2022,44(3):309⁃319. doi: 10.1111/ics.12778. |
| [49] | Le Bourgot C, Meunier C, Gaio E, et al. Effects of short chain fructo⁃oligosaccharides on selected skin bacteria[J]. Sci Rep, 2022,12(1):9702. doi: 10.1038/s41598⁃022⁃13093⁃5. |
| [1] | Xue Tianping, Lu Zhenzhong, Wang Hongsheng. Relationship between the pathogenesis of psoriasis and microbial flora [J]. Chinese Journal of Dermatology, 2026, 59(1): 89-92. |
| [2] | Zhou Miaoni, Sheng Anqi, Fu Lifang, Jin Rong, Xu Wen, Wei Xiaodong, Xu Ai′e . Efficacy and safety of an antioxidant gel containing tea polyphenols combined with narrow-band ultraviolet B in the treatment of vitiligo: a single-center randomized controlled trial [J]. Chinese Journal of Dermatology, 2025, 58(9): 834-838. |
| [3] | Zhang Chengfeng, Jin Shanglin. New insights into the pathogenesis and clinical therapeutic strategies of melasma [J]. Chinese Journal of Dermatology, 2025, 58(9): 797-800. |
| [4] | Tan Wei, Bai Yun, Chen Yuchong, Xu Mingyuan, Liu Yeqiang. CRTC1::TRIM11 fusion cutaneous tumor: the first case reported in China [J]. Chinese Journal of Dermatology, 2025, 58(9): 825-828. |
| [5] | Hong Yongzhen, Wang Qian, Liang Junqin, . Application of next-generation sequencing in the field of non-hereditary dermatoses [J]. Chinese Journal of Dermatology, 2025, 58(8): 793-796. |
| [6] | Li Enze, Chen Lu, Zhang Chuqiao, Yao Yuxu, Jiao Qingqing, Ji Jiang. Correlations of gut microbiota and short-chain fatty acids with chronic spontaneous urticaria [J]. Chinese Journal of Dermatology, 2025, 58(6): 577-581. |
| [7] | Li Jiaming, Wang Peng, Kang Xiaojing. Ferroptosis mechanisms and related intervention measures in malignant skin tumors [J]. Chinese Journal of Dermatology, 2025, 0(3): 20240125-e20240125. |
| [8] | Immunology Group, Chinese Society of Dermatology. Guidelines for fecal microbiota transplantation in the treatment of immune-mediated skin diseases(2025 edition) [J]. Chinese Journal of Dermatology, 2025, 58(12): 1112-1120. |
| [9] | Li Li, Zhang Bin, Xu Jiaosheng, Sun Juan, Chen Yunliu, Ma Lin. Balancing growth and healing: special considerations in the treatment of pediatric skin tumors and vascular malformations [J]. Chinese Journal of Dermatology, 2025, 58(10): 914-923. |
| [10] | Wang Qisa, Zhao Wenling, Han Xiufeng, Ma Huanyue, Shi Haitao, Ma Lin, Xu Zhe. Efficacy of a baby smoothing and special caring cream in reducing the recurrence of atopic dermatitis in infancy: a randomized controlled trial [J]. Chinese Journal of Dermatology, 2025, 58(10): 975-979. |
| [11] | Zheng Nana, Zeng Rong, Tao Yingkai, Li Min, . Relationship between circular RNAs and skin tumors [J]. Chinese Journal of Dermatology, 2025, 58(10): 999-1002. |
| [12] | Combination of Traditional and Western Medicine Dermatology, Chinese Society of Dermatology, China Dermatologist Association. Expert consensus on reflectance confocal microscopic features of common non-melanocytic skin tumors (2025 edition) [J]. Chinese Journal of Dermatology, 2025, 58(1): 20-33. |
| [13] | Ai Fangting, Sun Zijun, Miao Guoying, Yao Chunxia. Role of calcium-sensing receptors in the pathophysiology of skin of the elderly [J]. Chinese Journal of Dermatology, 2025, 58(1): 76-79. |
| [14] | Zhang Jiaqi, Wu Fan, Han Yuqing, Liu Qi, Pan Yao. Application of multi-photon microscopy in dermatology [J]. Chinese Journal of Dermatology, 2024, 57(9): 857-862. |
| [15] | Hao Feng, Liu Guoyan. Application of optical coherence tomography in dermatology [J]. Chinese Journal of Dermatology, 2024, 57(9): 853-857. |
|