Chinese Journal of Dermatology ›› 2023, Vol. 56 ›› Issue (9): 889-892.doi: 10.35541/cjd.20210064
• Reviews • Previous Articles Next Articles
Chen Fangqi, Liang Yan, Wu Ting, Huang Changzheng
Received:
2021-01-21
Revised:
2021-09-25
Online:
2023-09-15
Published:
2023-09-07
Contact:
Huang Changzheng
E-mail:hcz0501@126.com
Supported by:
Chen Fangqi, Liang Yan, Wu Ting, Huang Changzheng. Associations between m6A RNA methylation and cutaneous melanoma[J]. Chinese Journal of Dermatology, 2023, 56(9): 889-892.doi:10.35541/cjd.20210064
[1] | Garcias Morales D, Reyes JL. A birds′⁃eye view of the activity and specificity of the mRNA m6A methyltransferase complex[J/OL]. Wiley Interdiscip Rev RNA, 2021,12(1):e1618. doi: 10. 1002/wrna.1618. |
[2] | Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation[J]. Nat Rev Mol Cell Biol, 2019,20(10):608⁃624. doi: 10.1038/s41580⁃019⁃0168⁃5. |
[3] | Huang W, Chen TQ, Fang K, et al. N6⁃methyladenosine methyltransferases: functions, regulation, and clinical potential[J]. J Hematol Oncol, 2021,14(1):117. doi: 10.1186/s13045⁃021⁃01129⁃8. |
[4] | Ping XL, Sun BF, Wang L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6⁃methyladenosine methyltransferase[J]. Cell Res, 2014,24(2):177⁃189. doi: 10.1038/cr.2014.3. |
[5] | Yue Y, Liu J, Cui X, et al. VIRMA mediates preferential m6A mRNA methylation in 3′UTR and near stop codon and associates with alternative polyadenylation[J]. Cell Discov, 2018,4:10. doi: 10.1038/s41421⁃018⁃0019⁃0. |
[6] | Patil DP, Chen CK, Pickering BF, et al. m6A RNA methylation promotes XIST⁃mediated transcriptional repression[J]. Nature, 2016,537(7620):369⁃373. doi: 10.1038/nature19342. |
[7] | Knuckles P, Lence T, Haussmann IU, et al. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA⁃binding factor Rbm15/Spenito to the m6A machinery component Wtap/Fl(2)d[J]. Genes Dev, 2018,32(5⁃6):415⁃429. doi: 10. 1101/gad.309146.117. |
[8] | Bawankar P, Lence T, Paolantoni C, et al. Hakai is required for stabilization of core components of the m6A mRNA methylation machinery[J]. Nat Commun, 2021,12(1):3778. doi: 10.1038/s41467⁃021⁃23892⁃5. |
[9] | Zhao X, Yang Y, Sun BF, et al. FTO⁃dependent demethylation of N6⁃methyladenosine regulates mRNA splicing and is required for adipogenesis[J]. Cell Res, 2014,24(12):1403⁃1419. doi: 10. 1038/cr.2014.151. |
[10] | Tang C, Klukovich R, Peng H, et al. ALKBH5⁃dependent m6A demethylation controls splicing and stability of long 3′⁃UTR mRNAs in male germ cells[J/OL]. Proc Natl Acad Sci U S A, 2018,115(2):E325⁃E333. doi: 10.1073/pnas.1717794115. |
[11] | Roundtree IA, He C. Nuclear m6A reader YTHDC1 regulates mRNA splicing[J]. Trends Genet, 2016,32(6):320⁃321. doi: 10. 1016/j.tig.2016.03.006. |
[12] | Roundtree IA, Luo GZ, Zhang Z, et al. YTHDC1 mediates nuclear export of N6⁃methyladenosine methylated mRNAs[J/OL]. Elife, 2017,6:e31311. doi: 10.7554/eLife.31311. |
[13] | Hsu PJ, Zhu Y, Ma H, et al. Ythdc2 is an N6⁃methyladenosine binding protein that regulates mammalian spermatogenesis[J]. Cell Res, 2017,27(9):1115⁃1127. doi: 10.1038/cr.2017.99. |
[14] | Shi H, Wang X, Lu Z, et al. YTHDF3 facilitates translation and decay of N6⁃methyladenosine⁃modified RNA[J]. Cell Res, 2017,27(3):315⁃328. doi: 10.1038/cr.2017.15. |
[15] | Dai XY, Shi L, Li Z, et al. Main N6⁃methyladenosine readers: YTH family proteins in cancers[J]. Front Oncol, 2021,11:635329. doi: 10.3389/fonc.2021.635329. |
[16] | Huang H, Weng H, Sun W, et al. Recognition of RNA N6⁃methyladenosine by IGF2BP proteins enhances mRNA stability and translation[J]. Nat Cell Biol, 2018,20(3):285⁃295. doi: 10.1038/s41556⁃018⁃0045⁃z. |
[17] | Geuens T, Bouhy D, Timmerman V. The hnRNP family: insights into their role in health and disease[J]. Hum Genet, 2016,135(8):851⁃867. doi: 10.1007/s00439⁃016⁃1683⁃5. |
[18] | Valášek LS, Zeman J, Wagner S, et al. Embraced by eIF3: structural and functional insights into the roles of eIF3 across the translation cycle[J]. Nucleic Acids Res, 2017,45(19):10948⁃10968. doi: 10.1093/nar/gkx805. |
[19] | Gao R, Ye M, Liu B, et al. m6A modification: a double⁃edged sword in tumor development[J]. Front Oncol, 2021,11:679367. doi: 10.3389/fonc.2021.679367. |
[20] | Gide TN, Wilmott JS, Scolyer RA, et al. Primary and acquired resistance to immune checkpoint inhibitors in metastatic melanoma[J]. Clin Cancer Res, 2018,24(6):1260⁃1270. doi: 10. 1158/1078⁃0432.CCR⁃17⁃2267. |
[21] | Lin Y, Wang S, Liu S, et al. Identification and verification of molecular subtypes with enhanced immune infiltration based on m6A regulators in cutaneous melanoma[J]. Biomed Res Int, 2021,2021:2769689. doi: 10.1155/2021/2769689. |
[22] | Iles MM, Law MH, Stacey SN, et al. A variant in FTO shows association with melanoma risk not due to BMI[J]. Nat Genet, 2013,45(4):428⁃432. doi: 10.1038/ng.2571. |
[23] | Yang S, Wei J, Cui YH, et al. m6A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti⁃PD⁃1 blockade[J]. Nat Commun, 2019,10(1):2782. doi: 10.1038/s41467⁃019⁃10669⁃0. |
[24] | Dahal U, Le K, Gupta M. RNA m6A methyltransferase METTL3 regulates invasiveness of melanoma cells by matrix metallopeptidase 2[J]. Melanoma Res, 2019,29(4):382⁃389. doi: 10.1097/CMR.0000000000000580. |
[25] | Luo G, Xu W, Zhao Y, et al. RNA m6A methylation regulates uveal melanoma cell proliferation, migration, and invasion by targeting c⁃Met[J]. J Cell Physiol, 2020,235(10):7107⁃7119. doi: 10.1002/jcp.29608. |
[26] | Kim T, Havighurst T, Kim K, et al. Targeting insulin⁃like growth factor 2 mRNA⁃binding protein 1 (IGF2BP1) in metastatic melanoma to increase efficacy of BRAFV600E inhibitors[J]. Mol Carcinog, 2018,57(5):678⁃683. doi: 10.1002/mc.22786. |
[27] | Karras P, Riveiro⁃Falkenbach E, Cañón E, et al. p62/SQSTM1 fuels melanoma progression by opposing mRNA decay of a selective set of pro⁃metastatic factors[J]. Cancer Cell, 2019,35(1):46⁃63.e10. doi: 10.1016/j.ccell.2018.11.008. |
[28] | Ghoshal A, Rodrigues LC, Gowda CP, et al. Extracellular vesicle⁃dependent effect of RNA⁃binding protein IGF2BP1 on melanoma metastasis[J]. Oncogene, 2019,38(21):4182⁃4196. doi: 10.1038/s41388⁃019⁃0797⁃3. |
[29] | Hanniford D, Ulloa⁃Morales A, Karz A, et al. Epigenetic silencing of CDR1as drives IGF2BP3⁃mediated melanoma invasion and metastasis[J]. Cancer Cell, 2020,37(1):55⁃70.e15. doi: 10.1016/j.ccell.2019.12.007. |
[30] | Chu M, Wan H, Zhang X. Requirement of splicing factor hnRNP A2B1 for tumorigenesis of melanoma stem cells[J]. Stem Cell Res Ther, 2021,12(1):90. doi: 10.1186/s13287⁃020⁃02124⁃5. |
[31] | Li T, Gu M, Deng A, et al. Increased expression of YTHDF1 and HNRNPA2B1 as potent biomarkers for melanoma: a systematic analysis[J]. Cancer Cell Int, 2020,20:239. doi: 10.1186/s12935⁃020⁃01309⁃5. |
[32] | Li N, Kang Y, Wang L, et al. ALKBH5 regulates anti⁃PD⁃1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment[J]. Proc Natl Acad Sci U S A, 2020,117(33):20159⁃20170. doi: 10.1073/pnas.1918 986117. |
[33] | Jia R, Chai P, Wang S, et al. m6A modification suppresses ocular melanoma through modulating HINT2 mRNA translation[J]. Mol Cancer, 2019,18(1):161. doi: 10.1186/s12943⁃019⁃1088⁃x. |
[1] | Dong Dong, Liu Tianyi. Cell metabolism and metastasis of cutaneous malignant melanoma [J]. Chinese Journal of Dermatology, 2023, 56(9): 878-881. |
[2] | Yuan Xingang, Ni Sili, Zhang Jian, Luo Xiaoyan, Wang Hua. Improving diagnosis and treatment of melanocytic nevi in children: an urgent need [J]. Chinese Journal of Dermatology, 2023, 56(8): 782-786. |
[3] | Li Jiaqi, Ye Feng, Ju Qiang. Symbiotic homeostasis of Staphylococcus epidermidis is associated with common skin disorders [J]. Chinese Journal of Dermatology, 2023, 56(5): 459-462. |
[4] | Zhang Congcong, Chen Hao. Spitzoid melanocytic tumors [J]. Chinese Journal of Dermatology, 2023, 56(5): 463-467. |
[5] | Chen Yi, Song Xiuzu. Role of transient receptor potential channels in melanocytes and their related diseases [J]. Chinese Journal of Dermatology, 2023, 56(4): 376-379. |
[6] | Yang Yongting, Li Tingting, Kang Xiaojing. Biomarkers related to the treatment of melanoma with immune checkpoint inhibitors [J]. Chinese Journal of Dermatology, 2023, 56(3): 278-283. |
[7] | Wang Yuanli, Liu Ling, Sun Zhongbin, Li Kai. Analysis of 141 cases clinically misdiagnosed as melanoma [J]. Chinese Journal of Dermatology, 2023, 56(3): 244-246. |
[8] | Zhang Fuhe, Shi Lei, Luo Min, Liu Pei, Fan Qing, Wang Xiuli. Establishment of a SKH-1 mouse model of transplanted B16F10 melanoma [J]. Chinese Journal of Dermatology, 2023, 0(3): 20210689-e20210689. |
[9] | Zheng Nana, Zeng Rong, Tao Yingkai, Li Min, . Relationship between circular RNAs and skin tumors [J]. Chinese Journal of Dermatology, 2023, 0(2): 20210893-e20210893. |
[10] | Li Fang, Wang Xiaoqing, Liu Mengxi, Jiang Jiayi, Huang Shudai, Wang Daguang. Research advances in recurrent melanocytic nevus [J]. Chinese Journal of Dermatology, 2023, 0(2): 20220431-e20220431. |
[11] | Zhan Jinshan, Xuan Xiuyun, Cao Juanmei, Chen Fangqi, Huang Changzheng. Progress in treatment of anti-melanoma differentiation-associated gene 5 antibody-positive dermatomyositis [J]. Chinese Journal of Dermatology, 2023, 0(2): 20220368-e20220368. |
[12] | Li Tingting, Kang Xiaojing. Gut microbiota and immune checkpoint inhibitor treatment of melanoma [J]. Chinese Journal of Dermatology, 2023, 56(2): 177-180. |
[13] | Yang Hedan, Ding Hui, Fang Fumin, Zheng Huiying, Zhang Xiaoli, Liu Xing, Ge Yiping, Yang Yin, Lin Tong. Effect of miRNA-193b-5p-mediated decreased expression of transcriptional regulator CITED2 on melanogenesis [J]. Chinese Journal of Dermatology, 2023, 56(1): 29-34. |
[14] | Xia Li, Yang Linhong, Xu Li, Sun Wenguo, Yu Liang, Zhai Wanfang, Wang Dongxia, Kuang Xiaowan. Effect of microRNA-181b-5p on the proliferation and invasion of cutaneous melanoma cells and its mechanisms [J]. Chinese Journal of Dermatology, 2022, 55(7): 588-595. |
[15] | Zhang Ning, Li Shu, Li Jing . Efficacy of immune checkpoint inhibitors and targeted therapy in adjuvant treatment of resectable melanoma: a network meta-analysis [J]. Chinese Journal of Dermatology, 2022, 55(7): 603-609. |
|