中华皮肤科杂志 ›› 2024, e20230405.doi: 10.35541/cjd.20230405
程淑琼 钟美珍 郑思齐 曾抗 黄晓雯
收稿日期:
2023-07-17
修回日期:
2024-05-03
发布日期:
2024-09-29
通讯作者:
黄晓雯
E-mail:huangxw@smu.edu.cn
基金资助:
Cheng Shuqiong, Zhong Meizhen, Zheng Siqi, Zeng Kang, Huang Xiaowen
Received:
2023-07-17
Revised:
2024-05-03
Published:
2024-09-29
Contact:
Huang Xiaowen
E-mail:huangxw@smu.edu.cn
Supported by:
摘要: 【摘要】 皮脂腺脂质是皮脂的主要成分,其合成受多种因素的共同影响。皮脂腺脂质具有多种免疫学效应,在皮肤免疫中发挥重要作用,并且其含量和成分的变化会影响炎症性皮肤病的发生发展。本文综述影响皮脂腺脂质合成的主要因素及其免疫学效应,以期为炎症性皮肤病的临床治疗提供思路。
程淑琼 钟美珍 郑思齐 曾抗 黄晓雯. 皮脂腺脂质的合成及相关免疫学效应[J]. 中华皮肤科杂志, 2024,e20230405. doi:10.35541/cjd.20230405
Cheng Shuqiong, Zhong Meizhen, Zheng Siqi, Zeng Kang, Huang Xiaowen. Synthesis and related immunological effects of sebum lipids[J]. Chinese Journal of Dermatology,2024,e20230405. doi:10.35541/cjd.20230405
[1] | Butera A, Agostini M, Cassandri M, et al. ZFP750 affects the cutaneous barrier through regulating lipid metabolism[J]. Sci Adv, 2023,9(17):eadg5423. doi: 10.1126/sciadv.adg5423. |
[2] | Geueke A, Niemann C. Stem and progenitor cells in sebaceous gland development, homeostasis and pathologies[J]. Exp Dermatol, 2021,30(4):588⁃597. doi: 10.1111/exd.14303. |
[3] | Zouboulis CC, Coenye T, He L, et al. Sebaceous immunobiology ⁃ skin homeostasis, pathophysiology, coordination of innate immunity and inflammatory response and disease associations[J]. Front Immunol, 2022,13:1029818. doi: 10.3389/fimmu.2022. 1029818. |
[4] | Cho YT, Su H, Wu CY, et al. Molecular mapping of sebaceous squalene by ambient mass spectrometry[J]. Anal Chem, 2021,93(49):16608⁃16617. doi: 10.1021/acs.analchem.1c03983. |
[5] | Ishikawa A, Ito J, Shimizu N, et al. Linoleic acid and squalene are oxidized by discrete oxidation mechanisms in human sebum[J]. Ann N Y Acad Sci, 2021,1500(1):112⁃121. doi: 10.1111/nyas.14615. |
[6] | Shimizu N, Ito J, Kato S, et al. Evaluation of squalene oxidation mechanisms in human skin surface lipids and shark liver oil supplements[J]. Ann N Y Acad Sci, 2019,1457(1):158⁃165. doi: 10.1111/nyas.14219. |
[7] | Vietri Rudan M, Watt FM. Mammalian epidermis: a compendium of lipid functionality[J]. Front Physiol, 2021,12:804824. doi: 10.3389/fphys.2021.804824. |
[8] | 任威威, 薛兵, 方惠敏, 等. 基于AR/SREBP⁃1/ACC1信号通路探讨雄激素诱导金黄地鼠皮脂代谢异常的发病机制[J]. 实用医学杂志, 2020,36(8):1010⁃1014. doi: 10.3969/j.issn.1006⁃5725.2020.08.006. |
[9] | Choi K, Jin M, Zouboulis CC, et al. Increased lipid accumulation under hypoxia in sz95 human sebocytes[J]. Dermatology, 2021,237(1):131⁃141. doi: 10.1159/000505537. |
[10] | Sobolev VV, Tchepourina E, Korsunskaya IM, et al. The role of transcription factor PPAR⁃γ in the pathogenesis of psoriasis, skin cells, and immune cells[J]. Int J Mol Sci, 2022,23(17). doi: 10.3390/ijms23179708. |
[11] | Dozsa A, Mihaly J, Dezso B, et al. Decreased peroxisome proliferator⁃activated receptor γ level and signalling in sebaceous glands of patients with acne vulgaris[J]. Clin Exp Dermatol, 2016,41(5):547⁃551. doi: 10.1111/ced.12794. |
[12] | Zouboulis CC, Ní Raghallaigh S, Schmitz G, et al. The pro⁃differentiation effect of doxycycline on human SZ95 sebocytes[J]. Dermatology, 2021,237(5):792⁃796. doi: 10.1159/00051 0885. |
[13] | Conforti C, Agozzino M, Emendato G, et al. Acne and diet: a review[J]. Int J Dermatol, 2022,61(8):930⁃934. doi: 10.1111/ijd.15862. |
[14] | Cao K, Liu Y, Liang N, et al. Fatty acid profiling in facial sebum and erythrocytes from adult patients with moderate acne[J]. Front Physiol, 2022,13:921866. doi: 10.3389/fphys.2022.921866. |
[15] | Ottaviani M, Flori E, Mastrofrancesco A, et al. Sebocyte differentiation as a new target for acne therapy: an in vivo experience[J]. J Eur Acad Dermatol Venereol, 2020,34(8):1803⁃1814. doi: 10.1111/jdv.16252. |
[16] | Ayaki S, Mii T, Matsuno K, et al. β⁃1,4⁃Galactan suppresses lipid synthesis in sebaceous gland cells via TLR4[J]. J Biochem, 2023,173(2):85⁃94. doi: 10.1093/jb/mvac085. |
[17] | Ji LQ, Hong Y, Tao YX. Melanocortin⁃5 receptor: pharmacology and its regulation of energy metabolism[J]. Int J Mol Sci, 2022,23(15):8727. doi: 10.3390/ijms23158727. |
[18] | Langan EA, Hinde E, Paus R. Prolactin as a candidate sebotrop(h)ic hormone?[J]. Exp Dermatol, 2018,27(7):729⁃736. doi: 10.1111/exd.13545. |
[19] | Zákány N, Oláh A, Markovics A, et al. Endocannabinoid tone regulates human sebocyte biology[J]. J Invest Dermatol, 2018,138(8):1699⁃1706. doi: 10.1016/j.jid.2018.02.022. |
[20] | Markovics A, Angyal Á, Tóth KF, et al. GPR119 is a potent regulator of human sebocyte biology[J]. J Invest Dermatol, 2020,140(10):1909⁃1918.e8. doi: 10.1016/j.jid.2020.02.011. |
[21] | Szántó M, Oláh A, Szöllősi AG, et al. Activation of TRPV3 inhibits lipogenesis and stimulates production of inflammatory mediators in human sebocytes⁃a putative contributor to dry skin dermatoses[J]. J Invest Dermatol, 2019,139(1):250⁃253. doi: 10.1016/j.jid.2018.07.015. |
[22] | Dahlhoff M, Camera E, Ludovici M, et al. EGFR/ERBB receptors differentially modulate sebaceous lipogenesis[J]. FEBS Lett, 2015,589(12):1376⁃1382. doi: 10.1016/j.febslet.2015.04.003. |
[23] | Wu XJ, Jing J, Lu ZF, et al. VEGFR⁃2 is in a state of activation in hair follicles, sebaceous glands, eccrine sweat glands, and epidermis from human scalp: an in situ immunohistochemistry study of phosphorylated vegfr⁃2[J]. Med Sci Monit Basic Res, 2019,25:107⁃112. doi: 10.12659/MSMBR.914570. |
[24] | Harris⁃Tryon TA, Grice EA. Microbiota and maintenance of skin barrier function[J]. Science, 2022,376(6596):940⁃945. doi: 10. 1126/science.abo0693. |
[25] | Ianiri G, LeibundGut⁃Landmann S, Dawson TL Jr. Malassezia: a commensal, pathogen, and mutualist of human and animal skin[J]. Annu Rev Microbiol, 2022,76:757⁃782. doi: 10.1146/annurev⁃ micro⁃040820⁃010114. |
[26] | Xu H, Li H. Acne, the skin microbiome, and antibiotic treatment[J]. Am J Clin Dermatol, 2019,20(3):335⁃344. doi: 10.1007/s40257⁃018⁃00417⁃3. |
[27] | Edslev SM, Agner T, Andersen PS. Skin microbiome in atopic dermatitis[J]. Acta Derm Venereol, 2020,100(12):adv00164. doi: 10.2340/00015555⁃3514. |
[28] | Harris TA, Gattu S, Propheter DC, et al. Resistin⁃like molecule α provides vitamin⁃a⁃dependent antimicrobial protection in the skin[J]. Cell Host Microbe, 2019,25(6):777⁃788.e8. doi: 10. 1016/j.chom.2019.04.004. |
[29] | Zhang C, Hu Z, Lone AG, et al. Small proline⁃rich proteins (SPRRs) are epidermally produced antimicrobial proteins that defend the cutaneous barrier by direct bacterial membrane disruption[J]. Elife, 2022,11:e76729. doi: 10.7554/eLife.76729. |
[30] | Subramanian C, Frank MW, Batte JL, et al. Oleate hydratase from Staphylococcus aureus protects against palmitoleic acid, the major antimicrobial fatty acid produced by mammalian skin[J]. J Biol Chem, 2019,294(23):9285⁃9294. doi: 10.1074/jbc.RA119. 008439. |
[31] | Tiwari KB, Gatto C, Wilkinson BJ. Plasticity of coagulase⁃negative Staphylococcal membrane fatty acid composition and implications for responses to antimicrobial agents[J]. Antibiotics (Basel), 2020,9(5):214. doi: 10.3390/antibiotics9050214. |
[32] | Lovászi M, Mattii M, Eyerich K, et al. Sebum lipids influence macrophage polarization and activation[J]. Br J Dermatol, 2017,177(6):1671⁃1682. doi: 10.1111/bjd.15754. |
[33] | Do TH, Ma F, Andrade PR, et al. TREM2 macrophages induced by human lipids drive inflammation in acne lesions[J]. Sci Immunol, 2022,7(73):eabo2787. doi: 10.1126/sciimmunol.abo 2787. |
[34] | Li WH, Zhang Q, Flach CR, et al. In vitro modeling of unsaturated free fatty acid⁃mediated tissue impairments seen in acne lesions[J]. Arch Dermatol Res, 2017,309(7):529⁃540. doi: 10.1007/s00403⁃017⁃1747⁃y. |
[35] | Nakamizo S, Honda T, Sato T, et al. High⁃fat diet induces a predisposition to follicular hyperkeratosis and neutrophilic folliculitis in mice[J]. J Allergy Clin Immunol, 2021,148(2):473⁃485.e10. doi: 10.1016/j.jaci.2021.02.032. |
[36] | Dajnoki Z, Béke G, Kapitány A, et al. Sebaceous gland⁃rich skin is characterized by TSLP expression and distinct immune surveillance which is disturbed in rosacea[J]. J Invest Dermatol, 2017,137(5):1114⁃1125. doi: 10.1016/j.jid.2016.12.025. |
[37] | Jourdain R, Moga A, Magiatis P, et al. Malassezia restricta⁃mediated lipoperoxidation: a novel trigger in dandruff[J]. Acta Derm Venereol, 2023,103:adv00868. doi: 10.2340/actadv.v103. 4808. |
[38] | Choi CW, Kim Y, Kim JE, et al. Enhancement of lipid content and inflammatory cytokine secretion in SZ95 sebocytes by palmitic acid suggests a potential link between free fatty acids and acne aggravation[J]. Exp Dermatol, 2019,28(2):207⁃210. doi: 10.1111/exd.13855. |
[39] | Jung YR, Shin JM, Kim CH, et al. Activation of NLRP3 inflammasome by palmitic acid in human sebocytes[J]. Ann Dermatol, 2021,33(6):541⁃548. doi: 10.5021/ad.2021.33.6.541. |
[40] | Mias C, Mengeaud V, Bessou⁃Touya S, et al. Recent advances in understanding inflammatory acne: deciphering the relationship between Cutibacterium acnes and Th17 inflammatory pathway[J]. J Eur Acad Dermatol Venereol, 2023,37 Suppl 2:3⁃11. doi: 10.1111/jdv.18794. |
[41] | Törőcsik D, Fazekas F, Póliska S, et al. Epidermal growth factor modulates palmitic acid⁃induced inflammatory and lipid signaling pathways in SZ95 sebocytes[J]. Front Immunol, 2021,12:600017. doi: 10.3389/fimmu.2021.600017. |
[42] | Sanford JA, O'Neill AM, Zouboulis CC, et al. Short⁃chain fatty acids from Cutibacterium acnes activate both a canonical and epigenetic inflammatory response in human sebocytes[J]. J Immunol, 2019,202(6):1767⁃1776. doi: 10.4049/jimmunol.180 0893. |
[43] | Shen S, Yan G, Cao Y, et al. Dietary supplementation of n⁃3 PUFAs ameliorates LL37⁃induced rosacea⁃like skin inflammation via inhibition of TLR2/MyD88/NF⁃κB pathway[J]. Biomed Pharmacother, 2023,157:114091. doi: 10.1016/j.biopha.2022. 114091. |
[44] | Chen F, Hu X, Dong K. Consistency changes of potential lipid markers in acne patients of different ages and their role in acne pathogenesis[J]. J Cosmet Dermatol, 2021,20(7):2031⁃2035. doi: 10.1111/jocd.14009. |
[45] | Okoro OE, Adenle A, Ludovici M, et al. Lipidomics of facial sebum in the comparison between acne and non⁃acne adolescents with dark skin[J]. Sci Rep, 2021,11(1):16591. doi: 10.1038/s41598⁃021⁃96043⁃x. |
[46] | Esler WP, Tesz GJ, Hellerstein MK, et al. Human sebum requires de novo lipogenesis, which is increased in acne vulgaris and suppressed by acetyl⁃CoA carboxylase inhibition[J]. Sci Transl Med, 2019,11(492):eaau8465. doi: 10.1126/scitranslmed.aau8465. |
[47] | Jackson JM, Alexis A, Zirwas M, et al. Unmet needs for patients with seborrheic dermatitis[J]. J Am Acad Dermatol, 2024,90(3):597⁃604. doi: 10.1016/j.jaad.2022.12.017. |
[48] | Li H, Zhang Z, Zhang H, et al. Update on the pathogenesis and therapy of atopic dermatitis[J]. Clin Rev Allergy Immunol, 2021,61(3):324⁃338. doi: 10.1007/s12016⁃021⁃08880⁃3. |
[49] | Qiu Z, Zhu Z, Liu X, et al. A dysregulated sebum⁃microbial metabolite⁃IL⁃33 axis initiates skin inflammation in atopic dermatitis[J]. J Exp Med, 2022,219(10):e20212397. doi: 10.1084/jem.20212397. |
[50] | Bhattacharya N, Sato WJ, Kelly A, et al. Epidermal lipids: key mediators of atopic dermatitis pathogenesis[J]. Trends Mol Med, 2019,25(6):551⁃562. doi: 10.1016/j.molmed.2019.04.001. |
[51] | Liakou AI, Nyengaard JR, Bonovas S, et al. Marked reduction of the number and individual volume of sebaceous glands in psoriatic lesions[J]. Dermatology, 2016,232(4):415⁃424. doi: 10.1159/000445942. |
[52] | Agarwal NR, Dowlatshahi Pour M, Vandikas MS, et al. Investigation of psoriasis skin tissue by label⁃free multi⁃modal imaging: a case study on a phototherapy⁃treated patient[J]. Psoriasis (Auckl), 2019,9:43⁃57. doi: 10.2147/PTT.S200366. |
[53] | Sorokin AV, Arnardottir H, Svirydava M, et al. Comparison of the dietary omega⁃3 fatty acids impact on murine psoriasis⁃like skin inflammation and associated lipid dysfunction[J]. J Nutr Biochem, 2023,117:109348. doi: 10.1016/j.jnutbio.2023.109348. |
[1] | 林子沅 庞天怡 武静文 靳慧. 多环芳烃在炎症性皮肤病发生发展中的作用研究进展[J]. 中华皮肤科杂志, 2024, 57(8): 765-769. |
[2] | 鞠强 李嘉祺. [开放获取] 寻常痤疮再认识:从发病机制到治疗策略[J]. 中华皮肤科杂志, 2024, 57(4): 289-294. |
[3] | 何艳艳 马骁 惠云 王雯竹 王宝玺 曾荣 徐浩翔. 基于高通量测序对反常性痤疮中PPAR通路作用的初步探讨[J]. 中华皮肤科杂志, 2024, 57(4): 309-315. |
[4] | 魏子妤 杨勇. 离子通道与玫瑰痤疮发病机制的研究进展[J]. 中华皮肤科杂志, 2024, 57(2): 174-177. |
[5] | 钟洁敏 邵蕾 梁毅敏 黄琼霄 夏曼琪 刘玉梅. 射频火针与光动力疗法治疗面部中重度痤疮炎性皮损的疗效与安全性对比研究[J]. 中华皮肤科杂志, 2023, 56(8): 751-755. |
[6] | 连盼盼 刘军 苏忠兰 王宏伟. 过氧化物酶体增殖物激活受体γ对皮肤生理功能和病理过程的影响[J]. 中华皮肤科杂志, 2023, 56(4): 365-368. |
[7] | 尤睿璇 曾茁桐 邱湘宁 肖嵘. 靶向炎症性皮肤病中白细胞介素23/Th17轴的生物制剂——从基础到临床[J]. 中华皮肤科杂志, 2023, 56(11): 1065-1069. |
[8] | 宋晓婷 刘擘 陈玉迪 赵作涛. 玫瑰痤疮的病理生理发病机制研究进展[J]. 中华皮肤科杂志, 2022, 55(5): 446-449. |
[9] | 余愫 郁天泽 李巍. 自主神经在特应性皮炎免疫失调中的作用[J]. 中华皮肤科杂志, 2022, 55(4): 362-365. |
[10] | 吴淑辉 朱明芳 张曦 杨逸璇 张娟娟. 牛奶对金黄地鼠皮脂腺斑及IGF-1/SREBP-1/ACC-1信号通路的影响[J]. 中华皮肤科杂志, 2022, 55(3): 238-242. |
[11] | 中华医学会医学美学与美容学分会皮肤美容学组. 头皮健康管理专家共识(2022)[J]. 中华皮肤科杂志, 2022, 55(10): 843-849. |
[12] | 吴淑辉 朱明芳 魏露 张曦 朱亚梦. 石榴皮多酚对金黄地鼠皮脂腺斑及AKT/Sox9信号通路的影响[J]. 中华皮肤科杂志, 2021, 54(8): 705-708. |
[13] | 韩晓锋 孙娟 徐教生 马琳. 儿童脑回状皮脂腺痣14例临床分析[J]. 中华皮肤科杂志, 2021, 54(6): 529-531. |
[14] | 魏子妤 侯霄枭 曹珂 李昕 叶枫 胡婷婷 莫小辉 陈广洁 Christos C. Zouboulis 鞠强. 白藜芦醇对苯并芘诱导的人皮脂腺细胞炎症因子及相关基因表达的影响[J]. 中华皮肤科杂志, 2021, 54(6): 469-474. |
[15] | 裘卓琼 李巍. 皮肤菌群-宿主相互作用及其与炎症性皮肤病的关系[J]. 中华皮肤科杂志, 2020, 53(7): 576-580. |
|