中华皮肤科杂志 ›› 2024, Vol. 57 ›› Issue (4): 289-294.doi: 10.35541/cjd.20240074
鞠强 李嘉祺
收稿日期:
2024-02-02
修回日期:
2024-02-20
发布日期:
2024-04-07
通讯作者:
鞠强
E-mail:qiangju@aliyun.com
基金资助:
Ju Qiang, Li Jiaqi
Received:
2024-02-02
Revised:
2024-02-20
Published:
2024-04-07
Contact:
Ju Qiang
E-mail:qiangju@aliyun.com
Supported by:
摘要: 【摘要】 寻常痤疮是毛囊皮脂腺单位慢性炎症性疾病,其发病机制与雄激素诱导的脂质大量分泌、毛囊皮脂腺导管角化异常、毛囊微生物增殖及炎症和免疫反应密切相关,但具体的发病机制和病理生理过程仍未完全揭示。近年来随着研究不断深入,传统认知也不断更新并影响着临床治疗理念的转变。本文从激素水平、毛囊微生物、毛囊皮脂腺干细胞分化及重度痤疮发生机制等角度总结寻常痤疮发生机制中部分新观点、新理念及其在临床防治中的意义,为痤疮防治提供新的方向和思路。
鞠强 李嘉祺. [开放获取] 寻常痤疮再认识:从发病机制到治疗策略[J]. 中华皮肤科杂志, 2024,57(4):289-294. doi:10.35541/cjd.20240074
Ju Qiang, Li Jiaqi. Acne vulgaris revisited: from pathogenesis to treatment strategies[J]. Chinese Journal of Dermatology, 2024, 57(4): 289-294.doi:10.35541/cjd.20240074
[1] | Acne Group, Combination of Traditional and Western Medicine Dermatology; Acne Group, Chinese Society of Dermatology; Acne Group, Chinese Dermatologist Association, et al. Chinese guidelines for the management of acne vulgaris: 2019 update[J]. Int J Dermatol Venereol, 2019, 2(3): 129⁃138. doi:10.1097/jd9. 0000000000000043. |
[2] | Ju Q, Tao T, Hu T, et al. Sex hormones and acne[J]. Clin Dermatol, 2017,35(2):130⁃137. doi: 10.1016/j.clindermatol. 2016.10.004. |
[3] | 陆凌怡, 赖慧颖, 鞠强. 痤疮与胰岛素抵抗相关性的研究进展[J]. 国际皮肤性病学杂志, 2017,43(1):35⁃38. doi: 10.3760/cma.j.issn.1673⁃4173.2017.01.010. |
[4] | Zouboulis CC. Endocrinology and immunology of acne: two sides of the same coin[J]. Exp Dermatol, 2020,29(9):840⁃859. doi: 10.1111/exd.14172. |
[5] | Heng A, Say YH, Sio YY, et al. Gene variants associated with acne vulgaris presentation and severity: a systematic review and meta⁃analysis[J]. BMC Med Genomics, 2021,14(1):103. doi: 10.1186/s12920⁃021⁃00953⁃8. |
[6] | Melnik BC. Acne transcriptomics: fundamentals of acne pathogenesis and isotretinoin treatment[J]. Cells, 2023,12(22):2600. doi: 10.3390/cells12222600. |
[7] | Melnik BC. Acne vulgaris: the metabolic syndrome of the pilosebaceous follicle[J]. Clin Dermatol, 2018,36(1):29⁃40. doi: 10.1016/j.clindermatol.2017.09.006. |
[8] | Sadati MS, Yazdanpanah N, Shahriarirad R, et al. Efficacy of metformin vs. doxycycline in treating acne vulgaris: an assessor⁃blinded, add⁃on, randomized, controlled clinical trial[J]. J Cosmet Dermatol, 2023,22(10):2816⁃2823. doi: 10.1111/jocd. 15785. |
[9] | Dréno B, Pécastaings S, Corvec S, et al. Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: a brief look at the latest updates[J]. J Eur Acad Dermatol Venereol, 2018,32 (Suppl 2) :5⁃14. doi: 10.1111/jdv.15043. |
[10] | Kistowska M, Gehrke S, Jankovic D, et al. IL⁃1β drives inflammatory responses to Propionibacterium acnes in vitro and in vivo[J]. J Invest Dermatol, 2014,134(3):677⁃685. doi: 10.1038/jid.2013.438. |
[11] | Kistowska M, Meier B, Proust T, et al. Propionibacterium acnes promotes Th17 and Th17/Th1 responses in acne patients[J]. J Invest Dermatol, 2015,135(1):110⁃118. doi: 10.1038/jid.2014. 290. |
[12] | Almoughrabie S, Cau L, Cavagnero K, et al. Commensal Cutibacterium acnes induce epidermal lipid synthesis important for skin barrier function[J]. Sci Adv, 2023,9(33):eadg6262. doi: 10.1126/sciadv.adg6262. |
[13] | Cao K, Chen G, Chen W, et al. Formalin⁃killed Propionibacterium acnes activates the aryl hydrocarbon receptor and modifies differentiation of SZ95 sebocytes in vitro[J]. Eur J Dermatol, 2021,31(1):32⁃40. doi: 10.1684/ejd.2021.3964. |
[14] | Dagnelie MA, Montassier E, Khammari A, et al. Inflammatory skin is associated with changes in the skin microbiota composition on the back of severe acne patients[J]. Exp Dermatol, 2019,28(8):961⁃967. doi: 10.1111/exd.13988. |
[15] | Dagnelie MA, Corvec S, Timon⁃David E, et al. Cutibacterium acnes and Staphylococcus epidermidis: the unmissable modulators of skin inflammatory response[J]. Exp Dermatol, 2022,31(3):406⁃412. doi: 10.1111/exd.14467. |
[16] | Christensen GJ, Scholz CF, Enghild J, et al. Antagonism between Staphylococcus epidermidis and Propionibacterium acnes and its genomic basis[J]. BMC Genomics, 2016,17:152. doi: 10.1186/s12864⁃016⁃2489⁃5. |
[17] | Ramasamy S, Barnard E, Dawson TL Jr, et al. The role of the skin microbiota in acne pathophysiology[J]. Br J Dermatol, 2019,181(4):691⁃699. doi: 10.1111/bjd.18230. |
[18] | Li CX, You ZX, Lin YX, et al. Skin microbiome differences relate to the grade of acne vulgaris[J]. J Dermatol, 2019,46(9):787⁃790. doi: 10.1111/1346⁃8138.14952. |
[19] | Dagnelie MA, Corvec S, Saint⁃Jean M, et al. Decrease in diversity of Propionibacterium acnes phylotypes in patients with severe acne on the back[J]. Acta Derm Venereol, 2018,98(2):262⁃267. doi: 10.2340/00015555⁃2847. |
[20] | Agak GW, Kao S, Ouyang K, et al. Phenotype and antimicrobial activity of Th17 cells induced by Propionibacterium acnes strains associated with healthy and acne skin[J]. J Invest Dermatol, 2018,138(2):316⁃324. doi: 10.1016/j.jid.2017.07.842. |
[21] | Borrel V, Gannesen AV, Barreau M, et al. Adaptation of acneic and non acneic strains of Cutibacterium acnes to sebum⁃like environment[J]. Microbiologyopen, 2019,8(9):e00841. doi: 10.1002/mbo3.841. |
[22] | Kim SK, Lee M, Lee YQ, et al. Genome⁃scale metabolic modeling and in silico analysis of opportunistic skin pathogen Cutibacterium acnes[J]. Front Cell Infect Microbiol, 2023,13:1099314. doi: 10.3389/fcimb.2023.1099314. |
[23] | O'Neill AM, Cavagnero KJ, Seidman JS, et al. Genetic and functional analyses of Cutibacterium acnes isolates reveal the association of a linear plasmid with skin inflammation[J]. J Invest Dermatol, 2024,144(1):116⁃124.e4. doi: 10.1016/j.jid.2023.05.029. |
[24] | 李嘉祺, 梁梦晨, 吴心怡, 等. 中度寻常痤疮患者皮损毛囊内表皮葡萄球菌基因序列分型的初步研究[J]. 中华皮肤科杂志, 2024,57(4):295⁃301. doi: 10.35541/cjd.20230625. |
[25] | Kelhälä HL, Aho V, Fyhrquist N, et al. Isotretinoin and lymecycline treatments modify the skin microbiota in acne[J]. Exp Dermatol, 2018,27(1):30⁃36. doi: 10.1111/exd.13397. |
[26] | Goodarzi A, Mozafarpoor S, Bodaghabadi M, et al. The potential of probiotics for treating acne vulgaris: a review of literature on acne and microbiota[J]. Dermatol Ther, 2020,33(3):e13279. doi: 10.1111/dth.13279. |
[27] | Karoglan A, Paetzold B, Pereira de Lima J, et al. Safety and efficacy of topically applied selected Cutibacterium acnes strains over five weeks in patients with acne vulgaris: an open⁃label, pilot study[J]. Acta Derm Venereol, 2019,99(13):1253⁃1257. doi: 10.2340/00015555⁃3323. |
[28] | Nolan ZT, Banerjee K, Cong Z, et al. Treatment response to isotretinoin correlates with specific shifts in Cutibacterium acnes strain composition within the follicular microbiome[J]. Exp Dermatol, 2023,32(7):955⁃964. doi: 10.1111/exd.14798. |
[29] | Selway JL, Kurczab T, Kealey T, et al. Toll⁃like receptor 2 activation and comedogenesis: implications for the pathogenesis of acne[J]. BMC Dermatol, 2013,13:10. doi: 10.1186/1471⁃5945⁃13⁃10. |
[30] | Hou X, Wei Z, Zouboulis CC, et al. Aging in the sebaceous gland[J]. Front Cell Dev Biol, 2022,10:909694. doi: 10.3389/fcell.2022.909694. |
[31] | Shang W, Tan A, van Steensel M, et al. Aberrant Wnt signaling induces comedo⁃like changes in the murine upper hair follicle[J]. J Invest Dermatol, 2022,142(10):2603⁃2612.e6. doi: 10.1016/j.jid.2021.11.034. |
[32] | Oulès B, Philippeos C, Segal J, et al. Contribution of GATA6 to homeostasis of the human upper pilosebaceous unit and acne pathogenesis[J]. Nat Commun, 2020,11(1):5067. doi: 10.1038/s41467⁃020⁃18784⁃z. |
[33] | Hu T, Wang D, Yu Q, et al. Aryl hydrocarbon receptor negatively regulates lipid synthesis and involves in cell differentiation of SZ95 sebocytes in vitro[J]. Chem Biol Interact, 2016,258:52⁃58. doi: 10.1016/j.cbi.2016.08.012. |
[34] | Hou XX, Chen G, Hossini AM, et al. Aryl hydrocarbon receptor modulates the expression of TNF⁃α and IL⁃8 in human sebocytes via the MyD88⁃p65NF⁃κB/p38MAPK signaling pathways[J]. J Innate Immun, 2019,11(1):41⁃51. doi: 10.1159/000491029. |
[35] | Saurat JH, Sorg O, Leti M, et al. Novel silybum marianum achene extract and uses thereof in dermatology and dermo⁃cosmetics: US, 11285185[P/OL]. 2019⁃07⁃13[2024⁃02⁃02]. https://patents.justia.com/patent/20190175677. |
[36] | Picardo M, Cardinali C, La Placa M, et al. Efficacy and safety of N⁃acetyl⁃GED⁃0507⁃34⁃LEVO gel in patients with moderate⁃to severe facial acne vulgaris: a phase IIb randomized double⁃blind, vehicle⁃controlled trial[J]. Br J Dermatol, 2022,187(4):507⁃514. doi: 10.1111/bjd.21663. |
[37] | Liu L, Xue Y, Chen J, et al. DNA methylation profiling and integrative multi⁃omics analysis of skin samples reveal important contribution of epigenetics and immune response in the pathogenesis of acne vulgaris[J]. Clin Immunol, 2023,255:109773. doi: 10.1016/j.clim.2023.109773. |
[38] | Wang H, Dang T, Feng J, et al. Identification of differentially methylated genes for severe acne by genome⁃wide DNA methylation and gene expression analysis[J]. Epigenetics, 2023,18(1):2199373. doi: 10.1080/15592294.2023.2199373. |
[39] | Yang XY, Wu WJ, Yang C, et al. Association of HSD17B3 and HSD3B1 polymorphisms with acne vulgaris in Southwestern Han Chinese[J]. Dermatology, 2013,227(3):202⁃208. doi: 10.1159/000353581. |
[40] | Yang T, Wu WJ, Tian LM, et al. The associations of androgen⁃related genes CYP21A2 and CYP19A1 with severe acne vulgaris in patients from Southwest China[J]. Clin Cosmet Investig Dermatol, 2021,14:313⁃331. doi: 10.2147/CCID.S293171. |
[41] | He L, Wu WJ, Yang JK, et al. Two new susceptibility loci 1q24.2 and 11p11.2 confer risk to severe acne[J]. Nat Commun, 2014,5:2870. doi: 10.1038/ncomms3870. |
[42] | Carlavan I, Bertino B, Rivier M, et al. Atrophic scar formation in patients with acne involves long⁃acting immune responses with plasma cells and alteration of sebaceous glands[J]. Br J Dermatol, 2018,179(4):906⁃917. doi: 10.1111/bjd.16680. |
[43] | Moon J, Yoon JY, Yang JH, et al. Atrophic acne scar: a process from altered metabolism of elastic fibres and collagen fibres based on transforming growth factor⁃β1 signalling[J]. Br J Dermatol, 2019,181(6):1226⁃1237. doi: 10.1111/bjd.17851. |
[44] | Gudjonsson JE, Tsoi LC, Ma F, et al. Contribution of plasma cells and B cells to hidradenitis suppurativa pathogenesis[J]. JCI Insight, 2020,5(19):e139930. doi: 10.1172/jci.insight. 139930. |
[45] | Sabat R, Šimaitė D, Gudjonsson JE, et al. Neutrophilic granulocyte⁃derived B⁃cell activating factor supports B cells in skin lesions in hidradenitis suppurativa[J]. J Allergy Clin Immunol, 2023,151(4):1015⁃1026. doi: 10.1016/j.jaci.2022. 10.034. |
[46] | Kurokawa I, Layton AM, Ogawa R. Updated treatment for acne: targeted therapy based on pathogenesis[J]. Dermatol Ther (Heidelb), 2021,11(4):1129⁃1139. doi: 10.1007/s13555⁃021⁃00552⁃6. |
[1] | 陈启韬 李煜乾 邵光辉 朱晶 朱麒麟 李中明 杜旭峰 范卫新. 头皮糜烂性脓疱性皮病研究进展[J]. 中华皮肤科杂志, 2025, 58(3): 272-275. |
[2] | 陈良宏 孙艳 王敬玉 吴严. 本维莫德在皮肤病中的研究进展[J]. 中华皮肤科杂志, 2025, 58(3): 266-268. |
[3] | 蒋佳怡 王大光. 系统性疾病致甲改变机制研究进展[J]. 中华皮肤科杂志, 2025, 58(3): 282-285. |
[4] | 郭伟楠 王俊霞 陈慧 郝军峰 李冰 卫静宜 赵涛. 自体脂肪干细胞胶填充治疗凹陷性痤疮瘢痕疗效观察[J]. 中华皮肤科杂志, 2025, 58(2): 167-169. |
[5] | 王迪 张瑞珺 康玉英. 脂溢性皮炎的发病机制及治疗研究进展[J]. 中华皮肤科杂志, 2025, 58(1): 89-92. |
[6] | 谢媛媛 刘宇甄 曾荣. 皮肤影像技术在寻常痤疮诊疗中的应用进展[J]. 中华皮肤科杂志, 2024, 57(8): 757-760. |
[7] | 陈浩天 刘莲 张婷 刘青锋 李晓雪 刁萍 蒋献. 鲜红斑痣发病及进展机制研究进展[J]. 中华皮肤科杂志, 2024, 57(7): 661-664. |
[8] | 蒋献 刘莲 张婷. 鲜红斑痣的治疗现状及展望[J]. 中华皮肤科杂志, 2024, 57(7): 590-594. |
[9] | 封梦荻 王文氢. 转录因子和受体调控痤疮发病机制的研究进展[J]. 中华皮肤科杂志, 2024, 57(6): 575-578. |
[10] | 裴璐 郑娜娜 曾荣 谢媛媛 徐浩翔 段志敏 刘宇甄 李岷. 痤疮丙酸杆菌生物膜诱导角质形成细胞发生炎症反应的分子机制研究[J]. 中华皮肤科杂志, 2024, 57(4): 302-308. |
[11] | 李嘉祺 梁梦晨 吴心怡 张秋婧 李思彤 莫小辉 鞠强. 中度寻常痤疮患者皮损毛囊内表皮葡萄球菌基因序列分型的初步研究[J]. 中华皮肤科杂志, 2024, 57(4): 295-301. |
[12] | 严汝帆 廖洁月 郭子瑜 姚南 周文玉 罗帅寒天 张桂英 赵明. 天疱疮发病机制和靶向治疗的研究进展[J]. 中华皮肤科杂志, 2024, 57(4): 374-378. |
[13] | 张瑾 陈绍椿 尹跃平. 耐药淋球菌的备选治疗方案[J]. 中华皮肤科杂志, 2024, 57(3): 272-275. |
[14] | 宗杨永怡 马楚君 苏忠兰. 银屑病生物制剂治疗后湿疹化发生机制及应对策略[J]. 中华皮肤科杂志, 2024, 0(3): 20220578-e20220578. |
[15] | 王煜坤 刘洁. 深度学习在非肿瘤性皮肤病中的应用进展[J]. 中华皮肤科杂志, 2024, 0(3): 20220660-e20220660. |
|