Chinese Journal of Dermatology ›› 2024, Vol. 57 ›› Issue (8): 765-769.doi: 10.35541/cjd.20220271
• Reviews • Previous Articles Next Articles
Lin Ziyuan1,2,3, Pang Tianyi4, Wu Jingwen5, Jin Hui1,2,3
Received:
2022-04-19
Revised:
2022-10-08
Online:
2024-08-15
Published:
2024-08-02
Contact:
Jin Hui
E-mail:jinhui333@pumcderm.cams.cn
Supported by:
Lin Ziyuan, Pang Tianyi, Wu Jingwen, Jin Hui, . Role of polycyclic aromatic hydrocarbons in the occurrence and development of inflammatory skin diseases[J]. Chinese Journal of Dermatology, 2024, 57(8): 765-769.doi:10.35541/cjd.20220271
[1] | Zhang SM, Chen KM, Aliaga C, et al. Identification and |
quantification of DNA adducts in the oral tissues of mice treated with the environmental carcinogen dibenzo[a,l]pyrene by HPLC⁃MS/MS[J]. Chem Res Toxicol, 2011,24(8):1297⁃1303. doi: 10. 1021/tx200188j. | |
[2] | Sopian NA, Jalaludin J, Abu Bakar S, et al. Exposure to particulate PAHs on potential genotoxicity and cancer risk among school children living near the petrochemical industry[J]. Int J Environ Res Public Health, 2021,18(5):2575. doi: 10.3390/ijerph18052575. |
[3] | GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet, 2020,396(10258):1223⁃1249. doi: 10.1016/S0140⁃6736 (20)30752⁃2. |
[4] | Gutiérrez⁃Vázquez C, Quintana FJ. Regulation of the immune response by the aryl hydrocarbon receptor[J]. Immunity, 2018,48(1):19⁃33. doi: 10.1016/j.immuni.2017.12.012. |
[5] | Stockinger B, Di Meglio P, Gialitakis M, et al. The aryl hydrocarbon receptor: multitasking in the immune system[J]. Annu Rev Immunol, 2014,32:403⁃432. doi: 10.1146/annurev⁃immunol⁃032713⁃120245. |
[6] | Prunicki M, Cauwenberghs N, Lee J, et al. Air pollution exposure is linked with methylation of immunoregulatory genes, altered immune cell profiles, and increased blood pressure in children |
[J]. Sci Rep, 2021,11(1):4067. doi: 10.1038/s41598⁃021⁃83577⁃3. | |
[7] | Niu X, Jones T, BéruBé K, et al. The oxidative capacity of indoor source combustion derived particulate matter and resulting respiratory toxicity[J]. Sci Total Environ, 2021,767:144391. doi: 10.1016/j.scitotenv.2020.144391. |
[8] | O′Driscoll CA, Gallo ME, et al. Real⁃world PM extracts differentially enhance Th17 differentiation and activate the aryl hydrocarbon receptor (AHR)[J]. Toxicology, 2019,414:14⁃26. doi: 10.1016/j.tox.2019.01.002. |
[9] | Sun J, Shen Z, Zeng Y, et al. Characterization and cytotoxicity of PAHs in PM(2.5) emitted from residential solid fuel burning in the Guanzhong Plain, China[J]. Environ Pollut, 2018,241:359⁃368. doi: 10.1016/j.envpol. 2018.05.076. |
[10] | Xu HG, Zhai YX, Chen J, et al. LKB1 reduces ROS⁃mediated cell damage via activation of p38[J]. Oncogene, 2015,34(29):3848⁃3859. doi: 10.1038/onc. 2014.315. |
[11] | Nie M, Blankenship AL, Giesy JP. Interactions between aryl hydrocarbon receptor (AhR) and hypoxia signaling pathways[J]. Environ Toxicol Pharmacol, 2001,10(1⁃2):17⁃27. doi: 10. 1016/s1382⁃6689(01)00065⁃5. |
[12] | Liu A, Li X, Hao Z, et al. Alterations of DNA methylation and mRNA levels of CYP1A1, GSTP1, and GSTM1 in human bronchial epithelial cells induced by benzo[a]pyrene[J]. Toxicol Ind Health, 2022,38(3):127⁃138. doi: 10.1177/074823 37211069233. |
[13] | Zhao L, Zhang S, An X, et al. Toxicological effects of benzo[a]pyrene on DNA methylation of whole genome in ICR mice[J]. Cell Mol Biol (Noisy⁃le⁃grand), 2015,61(5):115⁃119. |
[14] | Zhang W, Yang J, Lv Y, et al. Paternal benzo[a]pyrene exposure alters the sperm DNA methylation levels of imprinting genes in F0 generation mice and their unexposed F1⁃2 male offspring[J]. Chemosphere, 2019,228:586⁃594. doi: 10.1016/j.chemosphere. 2019.04.092. |
[15] | Xia B, Yang LQ, Huang HY, et al. Repression of biotin⁃related proteins by benzo[a]pyrene⁃induced epigenetic modifications in human bronchial epithelial cells[J]. Int J Toxicol, 2016,35(3):336⁃343. doi: 10.1177/1091581816637071. |
[16] | Lizarraga D, Gaj S, Brauers KJ, et al. Benzo[a]pyrene⁃induced changes in microRNA⁃mRNA networks[J]. Chem Res Toxicol, 2012,25(4):838⁃849. doi: 10.1021/tx2003799. |
[17] | Filippov SV, Yarushkin AA, Yakovleva AK, et al. Effect of benzo(a)pyrene on the expression of AhR⁃regulated microRNA in female and male rat lungs[J]. Biomed Khim, 2020,66(3):224⁃232. doi: 10.18097/PBMC20206603224. |
[18] | Bellinato F, Adami G, Vaienti S, et al. Association between short⁃term exposure to environmental air pollution and psoriasis flare[J]. JAMA Dermatol, 2022,158(4):375⁃381. doi: 10.1001/jamadermatol.2021.6019. |
[19] | Gazel U, Ayan G, Solmaz D, et al. The impact of smoking on prevalence of psoriasis and psoriatic arthritis[J]. Rheumatology (Oxford), 2020,59(10):2695⁃2710. doi: 10.1093/rheumatology/keaa179. |
[20] | Groot J, Nybo Andersen AM, Blegvad C, et al. Prenatal, infantile, and childhood tobacco exposure and risk of pediatric psoriasis in the Danish National Birth Cohort offspring[J]. J Am Acad Dermatol, 2020,83(6):1625⁃1632. doi: 10.1016/j.jaad.2019.09. 038. |
[21] | Brunasso A, Massone C. Recent advances in palmoplantar pustulosis[J]. Fac Rev, 2021,10:62. doi: 10.12703/r/10⁃62. |
[22] | Shi H, Liu J, Gao H. Benzo(α)pyrene induces oxidative stress and inflammation in human vascular endothelial cells through AhR and NF⁃κB pathways[J]. Microvasc Res, 2021,137:104179. doi: 10.1016/j.mvr.2021.104179. |
[23] | Baskara I, Kerbrat S, Dagouassat M, et al. Cigarette smoking induces human CCR6(+)Th17 lymphocytes senescence and VEGF⁃A secretion[J]. Sci Rep, 2020,10(1):6488. doi: 10.1038/s41598⁃020⁃63613⁃4. |
[24] | Prieux R, Eeman M, Rothen⁃Rutishauser B, et al. Mimicking cigarette smoke exposure to assess cutaneous toxicity[J]. Toxicol In Vitro, 2020,62:104664. doi: 10.1016/j.tiv.2019.104664. |
[25] | Warren RB, Marsden A, Tomenson B, et al. Identifying demographic, social and clinical predictors of biologic therapy effectiveness in psoriasis: a multicentre longitudinal cohort study[J]. Br J Dermatol, 2019,180(5):1069⁃1076. doi: 10.1111/bjd. 16776. |
[26] | Borsky P, Chmelarova M, Fiala Z, et al. Variation of selected genotoxic and epigenetic markers due to therapeutic exposure to PAHs and ultraviolet radiation[J]. Bratisl Lek Listy, 2020,121(8):558⁃564. doi: 10.4149/BLL_2020_093. |
[27] | Patella V, Florio G, Palmieri M, et al. Atopic dermatitis severity during exposure to air pollutants and weather changes with an Artificial Neural Network (ANN) analysis[J]. Pediatr Allergy Immunol, 2020,31(8):938⁃945. doi: 10.1111/pai.13314. |
[28] | Nakhjirgan P, Mahmoodi M, Kashani H, et al. Air pollution and exacerbation of skin itching and sleep disturbance in Iranian atopic dermatitis patients[J]. J Environ Health Sci Eng, 2019,17(2):811⁃816. doi: 10.1007/s40201⁃019⁃00397⁃4. |
[29] | Kim BE, Kim J, Goleva E, et al. Particulate matter causes skin barrier dysfunction[J]. JCI Insight, 2021,6(5). doi: 10.1172/jci.insight.145185. |
[30] | Woo YR, Park SY, Choi K, et al. Air pollution and atopic dermatitis (AD): the impact of particulate matter (PM(10)) on an AD mouse⁃model[J]. Int J Mol Sci, 2020,21(17). doi: 10.3390/ijms21176079. |
[31] | Noh SR, Kim JS, Kim EH, et al. Spectrum of susceptibility to air quality and weather in individual children with atopic dermatitis[J]. Pediatr Allergy Immunol, 2019,30(2):179⁃187. doi: 10.1111/ pai.13005. |
[32] | Yang SI, Lee SH, Lee SY, et al. Prenatal PM(2.5) exposure and vitamin D⁃associated early persistent atopic dermatitis via placental methylation[J]. Ann Allergy Asthma Immunol, 2020,125(6):665⁃673.e1. doi: 10.1016/j.anai.2020.09.008. |
[33] | Pilz AC, Schielein MC, Schuster B, et al. Atopic dermatitis: disease characteristics and comorbidities in smoking and non⁃smoking patients from the TREAT Germany registry[J]. J Eur Acad Dermatol Venereol, 2022,36(3):413⁃421. doi: 10.1111/jdv. 17789. |
[34] | Kioi Y, Tabuchi T. Electronic, heat⁃not⁃burn, and combustible cigarette use among chronic disease patients in Japan: a cross⁃sectional study[J]. Tob Induc Dis, 2018,16:41. doi: 10.18332/tid/94455. |
[35] | Kim SY, Sim S, Choi HG. Atopic dermatitis is associated with active and passive cigarette smoking in adolescents[J]. PLoS One, 2017,12(11):e0187453. doi: 10.1371/journal.pone.0187453. |
[36] | Jarukitsopa S, Hoganson DD, Crowson CS, et al. Epidemiology of systemic lupus erythematosus and cutaneous lupus erythematosus in a predominantly white population in the United States[J]. Arthritis Care Res (Hoboken), 2015,67(6):817⁃828. doi: 10.1002/acr.22502. |
[37] | Park JS, Choi S, Kim K, et al. Association of particulate matter with autoimmune rheumatic diseases among adults in South Korea[J]. Rheumatology (Oxford), 2021,60(11):5117⁃5126. doi: 10.1093/rheumatology/keab127. |
[38] | Bai H, Jiang L, Li T, et al. Acute effects of air pollution on lupus nephritis in patients with systemic lupus erythematosus: A multicenter panel study in China[J]. Environ Res, 2021,195:110875. doi: 10.1016/j.envres.2021.110875. |
[39] | Farhat S, Ejnisman C, Alves A, et al. Air pollution influence on serum inflammatory interleukins: a prospective study in childhood⁃onset systemic lupus erythematous patients[J]. Lupus, 2021,30(14):2268⁃2275. doi: 10.1177/09612033211061479. |
[40] | Yariwake VY, Torres JI, Dos Santos A, et al. Chronic exposure to PM2.5 aggravates SLE manifestations in lupus⁃prone mice[J]. Part Fibre Toxicol, 2021,18(1):15. doi: 10.1186/s12989⁃021⁃00407⁃0. |
[41] | Chua M, Ng I, W L⁃Cheung M, et al. Association between cigarette smoking and systemic lupus erythematosus: an updated multivariate bayesian meta⁃analysis[J]. J Rheumatol, 2020,47(10):1514⁃1521. doi: 10.3899/jrheum.190733. |
[42] | Raymond WD, Hamdorf M, Furfaro M, et al. Smoking associates with increased BAFF and decreased interferon⁃γ levels in patients with systemic lupus erythematosus[J]. Lupus Sci Med, 2021,8(1)doi: 10.1136/lupus⁃2021⁃000537. |
[43] | Saghaeian Jazi M, Mohammadi S, Zare Ebrahimabad M, et al. Genetic variation in CYP1A1 and AHRR genes increase the risk of systemic lupus erythematosus and exacerbate disease severity in smoker patients[J]. J Biochem Mol Toxicol, 2021,35(12):e22916. doi: 10.1002/jbt.22916. |
[1] | Dou Jinfa, Wang Jianbo, Zhang Shuai, Li Jianguo, Liu Hongwei, Zhang Shoumin. Analysis of changes in disease status and their influencing factors in patients with moderate to severe plaque psoriasis receiving biologic therapy during the coronavirus disease 2019 pandemic: a single-center cross-sectional study [J]. Chinese Journal of Dermatology, 2024, 57(8): 739-742. |
[2] | Sui Changlin, Chang Xiao, Zhao Qi, Zhu Wei. Psoriasis induced by anti-tumor targeted therapy and immunotherapy [J]. Chinese Journal of Dermatology, 2024, 57(6): 570-574. |
[3] | Hu Mengyao, Li Min, Chen Sihan, Wei Xuecui, Chen Yujie, Xu Song, Chen Xu, . Different regulatory effects of S100A8/A9 expressed by keratinocytes in three common inflammatory skin injury modes [J]. Chinese Journal of Dermatology, 2024, 57(5): 435-444. |
[4] | China Dermatologist Association, Combination of Traditional and Western Medicine Dermatology. Diagnosis and treatment of erythrodermic psoriasis: a Chinese expert consensus statement (2024) [J]. Chinese Journal of Dermatology, 2024, 57(5): 409-417. |
[5] | Lu Jiawei, Lu Yan. Paradoxical psoriasis induced by tumor necrosis factor-α inhibitors and other biological agents [J]. Chinese Journal of Dermatology, 2024, 57(5): 479-482. |
[6] | Zhang Yuanwen, Sun Congqian, Pan Wendong. Off-label clinical application of botulinum toxin in dermatology [J]. Chinese Journal of Dermatology, 2024, 57(5): 471-475. |
[7] | Yuan Liyan, Yu Xiaoling, Wang Xiaohua, Yang Bin. TYK2 inhibitors for plaque psoriasis: mechanism of action and advances in clinical research [J]. Chinese Journal of Dermatology, 2024, 0(3): 20220740-e0220740. |
[8] | Ye Hui, Xue Rujun, Zhang Xibao. Application of biological therapies and mechanisms of immunophenotypic switching in psoriasis and atopic dermatitis [J]. Chinese Journal of Dermatology, 2024, 0(3): 20220795-e20220795. |
[9] | Zong Yangyongyi, Ma Chujun, Su Zhonglan. Eczematization following the treatment of psoriasis with biological agents: pathogenesis and management [J]. Chinese Journal of Dermatology, 2024, 0(3): 20220578-e20220578. |
[10] | Wang Yukun, Liu Jie. Application of deep learning in non-neoplastic dermatoses [J]. Chinese Journal of Dermatology, 2024, 0(3): 20220660-e20220660. |
[11] | Chen Xingyu, Yao Xu. Role of neutrophils in inflammatory dermatoses [J]. Chinese Journal of Dermatology, 2024, 0(3): 20220865-e20220865. |
[12] | Wu Yubing, Wang Xiaoyu, An Binyi, Wu Yingying, Sang Hong, Kong Qingtao, . Role of cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes signaling pathway in the occurrence of psoriasis [J]. Chinese Journal of Dermatology, 2024, 0(3): 20230394-e20230394. |
[13] | Zhu Tingting, Zhang Xuejun. Apremilast in the treatment of plaque psoriasis [J]. Chinese Journal of Dermatology, 2024, 0(3): 20230448-e20230448. |
[14] | Hao Dan, Wang Yiyi, Xiao Yue, Yan Wei, Li Wei. Systemic treatment options for psoriasis in special areas [J]. Chinese Journal of Dermatology, 2024, 0(3): 20230190-e20230190. |
[15] | Zheng Yuxin, Zheng Min. From confusion to clarity: exploration and practice in the chronic disease management of psoriasis [J]. Chinese Journal of Dermatology, 2024, 0(3): 20240014-e20240014. |