Chinese Journal of Dermatology ›› 2024, Vol. 57 ›› Issue (7): 668-671.doi: 10.35541/cjd.20210471
• Reviews • Previous Articles
Zhu Xue′e, Duan Manman, Ding Yuan
Received:
2021-06-25
Revised:
2022-04-29
Online:
2024-07-15
Published:
2024-07-02
Contact:
Ding Yuan
E-mail:dydyuan@126.com
Supported by:
Zhu Xue′e, Duan Manman, Ding Yuan. Long non-coding RNA-mediated competitive endogenous RNA regulatory network in keloids[J]. Chinese Journal of Dermatology, 2024, 57(7): 668-671.doi:10.35541/cjd.20210471
[1] | Cui J, Li Z, Jin C, et al. Knockdown of fibronectin extra domain B suppresses TGF⁃β1⁃mediated cell proliferation and collagen deposition in keloid fibroblasts via AKT/ERK signaling pathway[J]. Biochem Biophys Res Commun, 2020,526(4):1131⁃1137. doi: 10.1016/j.bbrc.2020.04.021. |
[2] | Duan X, Wu Y, Zhang Z, et al. Identification and analysis of dysregulated lncRNA and associated ceRNA in the pathogenesis of keloid[J]. Ann Transl Med, 2020,8(5):222. doi: 10.21037/atm.2020.01.07. |
[3] | Luo G, Wang M, Wu X, et al. Long non⁃coding RNA MEG3 inhibits cell proliferation and induces apoptosis in prostate cancer[J]. Cell Physiol Biochem, 2015,37(6):2209⁃2220. doi: 10.1159/000438577. |
[4] | Liang X, Ma L, Long X, et al. LncRNA expression profiles and validation in keloid and normal skin tissue[J]. Int J Oncol, 2015,47(5):1829⁃1838. doi: 10.3892/ijo.2015.3177. |
[5] | Guo L, Xu K, Yan H, et al. Expression profile of long noncoding RNAs in human earlobe keloids: a microarray analysis[J]. Biomed Res Int, 2016,2016:5893481. doi: 10.1155/2016/5893481. |
[6] | Liu Y, Yan W, Zhou D, et al. Long non⁃coding RNA HOXA11⁃AS accelerates cell proliferation and epithelial⁃mesenchymal transition in hepatocellular carcinoma by modulating the miR⁃506⁃3p/Slug axis[J]. Int J Mol Med, 2020,46(5):1805⁃1815. doi: 10.3892/ijmm.2020.4715. |
[7] | Sun XJ, Wang Q, Guo B, et al. Identification of skin⁃related lncRNAs as potential biomarkers that involved in Wnt pathways in keloids[J]. Oncotarget, 2017,8(21):34236⁃34244. doi: 10. 18632/oncotarget.15880. |
[8] | Su X, Ma Y, Wang Q, et al. LncRNA HOXA11⁃AS aggravates keloid progression by the regulation of HOXA11⁃AS⁃miR⁃205⁃5p⁃FOXM1 pathway[J]. J Surg Res, 2021,259:284⁃295. doi: 10. 1016/j.jss.2020.09.035. |
[9] | Wang Z, Feng C, Song K, et al. lncRNA⁃H19/miR⁃29a axis affected the viability and apoptosis of keloid fibroblasts through acting upon COL1A1 signaling[J]. J Cell Biochem, 2020,121(11):4364⁃4376. doi: 10.1002/jcb.29649. |
[10] | Wang SH, Wu XC, Zhang MD, et al. Long noncoding RNA H19 contributes to gallbladder cancer cell proliferation by modulated miR⁃194⁃5p targeting AKT2[J]. Tumour Biol, 2016,37(7):9721⁃9730. doi: 10.1007/s13277⁃016⁃4852⁃1. |
[11] | Wu T, Qu L, He G, et al. Regulation of laryngeal squamous cell cancer progression by the lncRNA H19/miR⁃148a⁃3p/DNMT1 axis[J]. Oncotarget, 2016,7(10):11553⁃11566. doi: 10.18632/oncotarget.7270. |
[12] | Yang J, Shi X, Yang M, et al. Glycolysis reprogramming in cancer⁃associated fibroblasts promotes the growth of oral cancer through the lncRNA H19/miR⁃675⁃5p/PFKFB3 signaling pathway[J]. Int J Oral Sci, 2021,13(1):12. doi: 10.1038/s41368⁃021⁃00115⁃7. |
[13] | Zhang J, Liu CY, Wan Y, et al. Long non⁃coding RNA H19 promotes the proliferation of fibroblasts in keloid scarring[J]. Oncol Lett, 2016,12(4):2835⁃2839. doi: 10.3892/ol.2016.4931. |
[14] | Yu S, Yu H, Zhang Y, et al. Long non⁃coding RNA LINC01116 acts as an oncogene in prostate cancer cells through regulation of miR⁃744⁃5p/UBE2L3 axis[J]. Cancer Cell Int, 2021,21(1):168. doi: 10.1186/s12935⁃021⁃01843⁃w. |
[15] | Jiang L, Cheng C, Ji W, et al. LINC01116 promotes the proliferation and invasion of glioma by regulating the microRNA⁃744⁃5p⁃MDM2⁃p53 axis[J]. Mol Med Rep, 2021,23(5):366. doi: 10.3892/mmr.2021.12005. |
[16] | Yuan C, Bu W, Li L, et al. Long non⁃coding RNA expression profiling in the lesional tissue and derived fibroblasts of keloid[J]. Postepy Dermatol Alergol, 2017,34(6):587⁃600. doi: 10. 5114/ada.2017.72466. |
[17] | Fukunaga K. Cognitive function and calcium. Cognitive improvement through T type calcium channel stimulation[J]. Clin Calcium, 2015,25(2):247⁃254. |
[18] | Yang J, Li C, Li H, et al. LncRNA CACNA1G⁃AS1 facilitates hepatocellular carcinoma progression through the miR⁃2392/C1orf61 pathway[J]. J Cell Physiol, 2019,234(10):18415⁃18422. doi: 10.1002/jcp.28477. |
[19] | Li Y, Liang X, Wang P, et al. Long non⁃coding RNA CACNA1G⁃AS1 promotes calcium channel protein expression and positively affects human keloid fibroblast migration[J]. Oncol Lett, 2018,16(1):891⁃897. doi: 10.3892/ol.2018.8717. |
[20] | Niu ZS, Wang WH, Dong XN, et al. Role of long noncoding RNA⁃mediated competing endogenous RNA regulatory network in hepatocellular carcinoma[J]. World J Gastroenterol, 2020,26(29):4240⁃4260. doi: 10.3748/wjg.v26.i29.4240. |
[21] | Tang M, Bian W, Cheng L, et al. Ginsenoside Rg3 inhibits keloid fibroblast proliferation, angiogenesis and collagen synthesis in vitro via the TGF⁃β/Smad and ERK signaling pathways[J]. Int J Mol Med, 2018,41(3):1487⁃1499. doi: 10.3892/ijmm.2018.3362. |
[22] | Zhang YE. Non⁃Smad signaling pathways of the TGF⁃β family[J]. Cold Spring Harb Perspect Biol, 2017,9(2):a022129. doi: 10.1101/cshperspect.a022129. |
[23] | Jin J, Jia ZH, Luo XH, et al. Long non⁃coding RNA HOXA11⁃AS accelerates the progression of keloid formation via miR⁃124⁃3p/TGFβR1 axis[J]. Cell Cycle, 2020,19(2):218⁃232. doi: 10. 1080/15384101.2019.1706921. |
[24] | Jin J, Zhai HF, Jia ZH, et al. Long non⁃coding RNA HOXA11⁃AS induces type I collagen synthesis to stimulate keloid formation via sponging miR⁃124⁃3p and activation of Smad5 signaling[J]. Am J Physiol Cell Physiol, 2019,317(5):C1001⁃C1010. doi: 10.1152/ajpcell.00319.2018. |
[25] | Wang XM, Liu XM, Wang Y, et al. Activating transcription factor 3 (ATF3) regulates cell growth, apoptosis, invasion and collagen synthesis in keloid fibroblast through transforming growth factor beta (TGF⁃beta)/SMAD signaling pathway[J]. Bioengineered, 2021,12(1):117⁃126. doi: 10.1080/21655979. 2020.1860491. |
[26] | Yuan W, Sun H, Yu L. Long non⁃coding RNA LINC01116 accelerates the progression of keloid formation by regulating miR⁃203/SMAD5 axis[J]. Burns, 2021,47(3):665⁃675. doi: 10.1016/j.burns.2020.07.027. |
[27] | An G, Liang S, Sheng C, et al. Upregulation of microRNA⁃205 suppresses vascular endothelial growth factor expression⁃mediated PI3K/Akt signaling transduction in human keloid fibroblasts[J]. Exp Biol Med (Maywood), 2017,242(3):275⁃285. doi: 10.1177/1535370216669839. |
[28] | Penke LR, Speth JM, Dommeti VL, et al. FOXM1 is a critical driver of lung fibroblast activation and fibrogenesis[J]. J Clin Invest, 2018,128(6):2389⁃2405. doi: 10.1172/JCI87631. |
[29] | Zhang Y, Cheng C, Wang S, et al. Knockdown of FOXM1 inhibits activation of keloid fibroblasts and extracellular matrix production via inhibition of TGF⁃β1/Smad pathway[J]. Life Sci, 2019,232:116637. doi: 10.1016/j.lfs.2019.116637. |
[30] | Xu L, Sun N, Li G, et al. LncRNA H19 promotes keloid formation through targeting the miR⁃769⁃5p/EIF3A pathway[J]. Mol Cell Biochem, 2021,476(3):1477⁃1487. doi: 10.1007/s11010⁃020⁃04024⁃x. |
[31] | Ouyang T, Qin Y, Luo K, et al. MiR⁃486⁃3p regulates CyclinD1 and promotes fluoride⁃induced osteoblast proliferation and activation[J]. Environ Toxicol, 2021,36(9):1817⁃1828. doi: 10. 1002/tox.23302. |
[32] | Meng Y, Hu X, Li S, et al. MiR⁃203 inhibits cell proliferation and ERK pathway in prostate cancer by targeting IRS⁃1[J]. BMC Cancer, 2020,20(1):1028. doi: 10.1186/s12885⁃020⁃07472⁃2. |
[33] | Shi K, Qiu X, Zheng W, et al. MiR⁃203 regulates keloid fibroblast proliferation, invasion, and extracellular matrix expres⁃sion by targeting EGR1 and FGF2[J]. Biomed Pharmacother, 2018,108:1282⁃1288. doi: 10.1016/j.biopha.2018.09.152. |
[1] | Xu Jingwei, Chen Shuang, Guo Kelei, Han Li, Bian Hua, . MicroRNAs regulating signaling pathways related to systemic scleroderma fibrosis [J]. Chinese Journal of Dermatology, 2024, 0(3): 20230730-e20230730. |
[2] | Liu Chenyang, Yuan Xinghua, Zhi Jiahui, Hem Kumari Rai, Lu Bo, Xu Weilu, Jin Zhehu. Effect of transmembrane protein 45A on extracellular matrix synthesis by keloid-derived fibroblasts [J]. Chinese Journal of Dermatology, 2023, 56(7): 666-669. |
[3] | Tang Zhiming, Jing Mengqing, Lu Lu, Shan Xiao, Zhang Cuixia, Zhang Xiaoyu, Meng Sa. Effect of Xidi Liangxue recipe on the proliferation and apoptosis of HaCaT cells through the lncRNA NEAT1/miR-485-5p/STAT3 regulatory network [J]. Chinese Journal of Dermatology, 2023, 56(7): 642-650. |
[4] | Sang Pengfei, Fang Mingsong, Li Xuan, Cao Lin, Zhao Lingling, Liu Chang, Jiang Zhiyong, Zhu Fei. Effects of the ROCK1 gene on proliferation and migration of and related molecular expression in keloid fibroblasts [J]. Chinese Journal of Dermatology, 2023, 56(3): 222-228. |
[5] | Huang Wenhua, Zheng Zhenlong, Jin Zhehu. Role of transforming growth factor-β/Smad pathway and related factors in the pathogenesis of keloids [J]. Chinese Journal of Dermatology, 2023, 0(2): 20220556-e20220556. |
[6] | Zhang Rongju, Zhu Yueqian, Zhou Naihui, Qian Qihong. Imaging techniques in keloids [J]. Chinese Journal of Dermatology, 2023, 0(2): 20220734-e20220734. |
[7] | Qiao Jiaxi, Chen Yao, Du Kun, Chen Liuqing, Chen Jinbo, Wei Li. A preliminary study on the inhibitory effect of gallic acid on the growth of human keloid fibroblasts by the transforming growth factor-β/Sma- and Mad-related proteins signaling pathway [J]. Chinese Journal of Dermatology, 2023, 56(12): 1138-1145. |
[8] | Yang Xiao, Zeng Yanchao, He Li, Wu Wenjuan. Long non-coding RNAs in benign and malignant proliferative skin diseases [J]. Chinese Journal of Dermatology, 2023, 56(11): 1080-1084. |
[9] | Li Rong, Chen Kun, Zhang Jiaan. Mechanism of action of long non-coding RNA in cutaneous squamous cell carcinoma [J]. Chinese Journal of Dermatology, 2023, 56(10): 985-988. |
[10] | Lu Nan, Tan Xingyou, Liu Xiang, Niu Lili, Yao Shulan. Association of single nucleotide polymorphisms in microRNAs with the risk of chronic spontaneous urticaria [J]. Chinese Journal of Dermatology, 2022, 55(9): 806-809. |
[11] | Li Zhouna, Jin Wenyan, Jin Zhehu. Effect of ultrasound combined with 4-hydroxyphenyl-retinamide lipid microbubbles on type Ⅰ collagen α1 chain expression in keloid-derived fibroblasts [J]. Chinese Journal of Dermatology, 2022, 55(7): 596-598. |
[12] | Xia Li, Yang Linhong, Xu Li, Sun Wenguo, Yu Liang, Zhai Wanfang, Wang Dongxia, Kuang Xiaowan. Effect of microRNA-181b-5p on the proliferation and invasion of cutaneous melanoma cells and its mechanisms [J]. Chinese Journal of Dermatology, 2022, 55(7): 588-595. |
[13] | . Role and action mechanism of microRNA-26a targeting EZH2 in ultraviolet A-induced photoaging of human skin fibroblasts [J]. Chinese Journal of Dermatology, 2021, 54(7): 612-619. |
[14] | Su Fang, Jin Liang, Li Hao, Ding Yingjie, Sun Xiaojie, Sun Xiaodong, Liu Wei, Xu Guijuan, Wang Qiang, Liu Yongbin. Mechanisms underlying microRNA-125a-mediated inhibition of proliferation of HaCaT cells by targeting the interleukin 23 receptor signaling pathway: a preliminary study [J]. Chinese Journal of Dermatology, 2021, 54(6): 499-503. |
[15] | Han Bingyu, Lei Tiechi, Jiang Shan, Luo Longfei, Hu Shuanghai, Liao Zhikai, Qiu Xie. Expression and distribution of human dermal reticular fibroblasts in keloid tissues [J]. Chinese Journal of Dermatology, 2021, 54(6): 504-509. |