Chinese Journal of Dermatology ›› 2025, e20240192.doi: 10.35541/cjd.20240192
• Reviews • Previous Articles Next Articles
Ye Hui, Deng Shilin, Liang Jingyao, Zhang Xibao
Received:
2024-04-11
Revised:
2024-08-08
Online:
2025-01-24
Published:
2025-02-08
Contact:
Zhang Xibao
E-mail:zxibao@126.com
Ye Hui, Deng Shilin, Liang Jingyao, Zhang Xibao. Correlations between the control of atopic dermatitis recurrence and tissue-resident memory T cells[J]. Chinese Journal of Dermatology,2025,e20240192. doi:10.35541/cjd.20240192
[1] | 中华医学会皮肤性病学分会免疫学组, 特应性皮炎协作研究中心. 中国特应性皮炎诊疗指南(2020版)[J]. 中华皮肤科杂志, 2020,53(2):81⁃88. doi: 10.35541/cjd.20191000. |
[2] | 中华医学会皮肤性病学分会免疫学组. 特应性皮炎的全程管理共识[J]. 中华皮肤科杂志, 2023,56(1):5⁃15. doi: 10.35541/cjd.20220618. |
[3] | Li L, Liu P, Chen C, et al. Advancements in the characterization of tissue resident memory T cells in skin disease[J]. Clin Immunol, 2022,245:109183. doi: 10.1016/j.clim.2022.109183. |
[4] | Zheng C, Cao T, Ye C, et al. Neutrophil recruitment by CD4 tissue⁃resident memory T cells induces chronic recurrent inflammation in atopic dermatitis[J]. Clin Immunol, 2023,256:109805. doi: 10.1016/j.clim.2023.109805. |
[5] | Pritzl CJ, Daniels MA, Teixeiro E. Interplay of inflammatory, antigen and tissue⁃derived signals in the development of resident CD8 memory T cells[J]. Front Immunol, 2021,12:636240. doi: 10.3389/fimmu.2021.636240. |
[6] | Strobl J, Haniffa M. Functional heterogeneity of human skin⁃resident memory T cells in health and disease[J]. Immunol Rev, 2023,316(1):104⁃119. doi: 10.1111/imr.13213. |
[7] | Emmanuel T, Mistegård J, Bregnhøj A, et al. Tissue⁃resident memory T cells in skin diseases: a systematic review[J]. Int J Mol Sci, 2021,22(16):9004. doi: 10.3390/ijms22169004. |
[8] | Matos TR, Gehad A, Teague JE, et al. Central memory T cells are the most effective precursors of resident memory T cells in human skin[J]. Sci Immunol, 2022,7(70):eabn1889. doi: 10. 1126/sciimmunol.abn1889. |
[9] | Miron M, Meng W, Rosenfeld AM, et al. Maintenance of the human memory T cell repertoire by subset and tissue site[J]. Genome Med, 2021,13(1):100. doi: 10.1186/s13073⁃021⁃00 918⁃7. |
[10] | Fonseca R, Beura LK, Quarnstrom CF, et al. Developmental plasticity allows outside⁃in immune responses by resident memory T cells[J]. Nat Immunol, 2020,21(4):412⁃421. doi: 10. 1038/s41590⁃020⁃0607⁃7. |
[11] | Liu G, Wang Z, Li S. Heterogeneity and plasticity of tissue⁃resident memory T cells in skin diseases and homeostasis: a review[J]. Front Immunol, 2024,15:1378359. doi: 10.3389/fimmu. 2024.1378359. |
[12] | McCully ML, Ladell K, Andrews R, et al. CCR8 expression defines tissue⁃resident memory T cells in human skin[J]. J Immunol, 2018,200(5):1639⁃1650. doi: 10.4049/jimmunol. 1701377. |
[13] | Evrard M, Becht E, Fonseca R, et al. Single⁃cell protein expression profiling resolves circulating and resident memory T cell diversity across tissues and infection contexts[J]. Immunity, 2023,56(7):1664⁃1680.e9. doi: 10.1016/j.immuni.2023.06.005. |
[14] | Purwar R, Campbell J, Murphy G, et al. Resident memory T cells (TRM) are abundant in human lung: diversity, function, and antigen specificity[J/OL]. PLoS One, 2011,6(1):e16245. doi: 10. 1371/journal.pone.0016245. |
[15] | Khalil S, Bardawil T, Kurban M, et al. Tissue⁃resident memory T cells in the skin[J]. Inflamm Res, 2020,69(3):245⁃254. doi: 10. 1007/s00011⁃020⁃01320⁃6. |
[16] | Wienke J, Veldkamp SR, Struijf EM, et al. T cell interaction with activated endothelial cells primes for tissue⁃residency[J]. Front Immunol, 2022,13:827786. doi: 10.3389/fimmu.2022.827786. |
[17] | Kurihara K, Fujiyama T, Tokura Y, et al. Possible involvement of interleukin⁃22⁃producing CD103(+) CD8(+) T cells in the epidermal hyperplasia of atopic dermatitis[J]. J Dermatol, 2022,49(7):746⁃748. doi: 10.1111/1346⁃8138.16382. |
[18] | Marchesini Tovar G, Gallen C, Bergsbaken T. CD8+ tissue⁃resident memory T cells: versatile guardians of the tissue[J]. J Immunol, 2024,212(3):361⁃368. doi: 10.4049/jimmunol.230 0399. |
[19] | Harrison OJ, Linehan JL, Shih HY, et al. Commensal⁃specific T cell plasticity promotes rapid tissue adaptation to injury[J]. Science, 2019,363(6422):eaat6280. doi: 10.1126/science.aat 6280. |
[20] | Ogongo P, Tezera LB, Ardain A, et al. Tissue⁃resident⁃like CD4+ T cells secreting IL⁃17 control Mycobacterium tuberculosis in the human lung[J]. J Clin Invest, 2021,131(10):e142014. doi: 10.1172/JCI142014. |
[21] | Reina⁃Campos M, Heeg M, Kennewick K, et al. Metabolic programs of T cell tissue residency empower tumour immunity[J]. Nature, 2023,621(7977):179⁃187. doi: 10.1038/s41586⁃023⁃06483⁃w. |
[22] | Li C, Zhu B, Son YM, et al. The Transcription factor Bhlhe40 programs mitochondrial regulation of resident CD8(+) T cell fitness and functionality[J]. Immunity, 2020,52(1):201⁃202. doi: 10.1016/j.immuni.2019.12.008. |
[23] | Sans⁃De San Nicolàs L, Figueras⁃Nart I, Bonfill⁃Ortí M, et al. SEB⁃induced IL⁃13 production in CLA(+) memory T cells defines Th2 high and Th2 low responders in atopic dermatitis[J]. Allergy, 2022,77(11):3448⁃3451. doi: 10.1111/all.15424. |
[24] | Lin R, Zhang H, Yuan Y, et al. Fatty acid oxidation controls CD8(+) tissue⁃resident memory T⁃cell survival in gastric adenocarcinoma[J]. Cancer Immunol Res, 2020,8(4):479⁃492. doi: 10.1158/2326⁃6066.CIR⁃19⁃0702. |
[25] | Pan Y, Kupper TS. Metabolic reprogramming and longevity of tissue⁃resident memory T cells[J]. Front Immunol, 2018,9:1347. doi: 10.3389/fimmu.2018.01347. |
[26] | Bromley SK, Akbaba H, Mani V, et al. CD49a regulates cutaneous resident memory CD8(+) T cell persistence and response[J]. Cell Rep, 2020,32(9):108085. doi: 10.1016/j.celrep.2020.108085. |
[27] | Yang XX, Yang C, Wang L, et al. Molecular mechanism of sphingosine⁃1⁃phosphate receptor 1 regulating CD4(+) tissue memory in situ T cells in primary Sjogren's syndrome[J]. Int J Gen Med, 2021,14:6177⁃6188. doi: 10.2147/IJGM.S327304. |
[28] | Jung J, Lee JS, Kim YG, et al. Synovial fluid CD69(+)CD8(+) T cells with tissue⁃resident phenotype mediate perforin⁃dependent citrullination in rheumatoid arthritis[J]. Clin Transl Immunology, 2020,9(6):e1140. doi: 10.1002/cti2.1140. |
[29] | Mackay CR. CXCR3⁺CCR5⁺ T cells and autoimmune diseases: guilty as charged?[J]. J Clin Invest, 2014,124(9):3682⁃3684. doi: 10.1172/JCI77837. |
[30] | Vimonpatranon S, Goes LR, Chan A, et al. MAdCAM⁃1 costimulation in the presence of retinoic acid and TGF⁃β promotes HIV infection and differentiation of CD4+ T cells into CCR5+ TRM⁃like cells[J/OL]. PLoS Pathog, 2023,19(3):e1011209. doi: 10.1371/journal.ppat.1011209. |
[31] | Ferreira C, Barros L, Baptista M, et al. Type 1 T(reg) cells promote the generation of CD8(+) tissue⁃resident memory T cells[J]. Nat Immunol, 2020,21(7):766⁃776. doi: 10.1038/s41590⁃020⁃0674⁃9. |
[32] | Sans⁃De San Nicolàs L, Figueras⁃Nart I, Bonfill⁃Ortí M, et al. SEB⁃induced IL⁃13 production in CLA(+) memory T cells defines Th2 high and Th2 low responders in atopic dermatitis[J]. Allergy, 2022,77(11):3448⁃3451. doi: 10.1111/all.15424. |
[33] | He H, Suryawanshi H, Morozov P, et al. Single⁃cell transcriptome analysis of human skin identifies novel fibroblast subpopulation and enrichment of immune subsets in atopic dermatitis[J]. J Allergy Clin Immunol, 2020,145(6):1615⁃1628. doi: 10.1016/j.jaci.2020.01.042. |
[34] | Brunner PM, Emerson RO, Tipton C, et al. Nonlesional atopic dermatitis skin shares similar T⁃cell clones with lesional tissues[J]. Allergy, 2017,72(12):2017⁃2025. doi: 10.1111/all.13223. |
[35] | Beck LA, Bieber T, Weidinger S, et al. Tralokinumab treatment improves the skin microbiota by increasing the microbial diversity in adults with moderate⁃to⁃severe atopic dermatitis: Analysis of microbial diversity in ECZTRA 1, a randomized controlled trial[J]. J Am Acad Dermatol, 2023,88(4):816⁃823. doi: 10.1016/j.jaad.2022.11.047. |
[36] | Park CO, Fu X, Jiang X, et al. Staged development of long⁃lived T⁃cell receptor αβ T(H)17 resident memory T⁃cell population to Candida albicans after skin infection[J]. J Allergy Clin Immunol, 2018,142(2):647⁃662. doi: 10.1016/j.jaci.2017.09.042. |
[37] | Rauer L, Reiger M, Bhattacharyya M, et al. Skin microbiome and its association with host cofactors in determining atopic dermatitis severity[J]. J Eur Acad Dermatol Venereol, 2023,37(4):772⁃782. doi: 10.1111/jdv.18776. |
[38] | Lee SH, Kang B, Kamenyeva O, et al. Dermis resident macrophages orchestrate localized ILC2 eosinophil circuitries to promote non⁃healing cutaneous leishmaniasis[J]. Nat Commun, 2023,14(1):7852. doi: 10.1038/s41467⁃023⁃43588⁃2. |
[39] | Osinka K, Dumycz K, Kwiek B, et al. Novel therapeutic approaches to atopic dermatitis[J]. Arch Immunol Ther Exp (Warsz), 2018,66(3):171⁃181. doi: 10.1007/s00005⁃017⁃04 87⁃1. |
[40] | Czarnowicki T, Kim HJ, Villani AP, et al. High⁃dimensional analysis defines multicytokine T⁃cell subsets and supports a role for IL⁃21 in atopic dermatitis[J]. Allergy, 2021,76(10):3080⁃3093. doi: 10.1111/all.14845. |
[41] | Karlen H, Yousefi S, Simon HU, et al. IL⁃15 expression pattern in atopic dermatitis[J]. Int Arch Allergy Immunol, 2020,181(6):417⁃421. doi: 10.1159/000508515. |
[42] | Tieu R, Zeng Q, Zhao D, et al. Tissue⁃resident memory T cell maintenance during antigen persistence requires both cognate antigen and interleukin⁃15[J]. Sci Immunol, 2023,8(82):eadd 8454. doi: 10.1126/sciimmunol.add8454. |
[43] | Ren HM, Kolawole EM, Ren M, et al. IL⁃21 from high⁃affinity CD4 T cells drives differentiation of brain⁃resident CD8 T cells during persistent viral infection[J]. Sci Immunol, 2020,5(51):eabb5590. doi: 10.1126/sciimmunol.abb5590. |
[44] | Jafari AJ, Rivera M, Hebert AA. The role of thymic stromal lymphopoietin in cutaneous disorders[J]. Arch Dermatol Res, 2024,316(5):123. doi: 10.1007/s00403⁃024⁃02866⁃9. |
[45] | Gimenez⁃Rivera VA, Patel H, Dupuy FP, et al. NOD2 agonism counter⁃regulates human type 2 T cell functions in peripheral blood mononuclear cell cultures: implications for atopic dermatitis[J]. Biomolecules, 2023,13(2):369. doi: 10.3390/biom13020369. |
[46] | Park CO, Kupper TS. The emerging role of resident memory T cells in protective immunity and inflammatory disease[J]. Nat Med, 2015,21(7):688⁃697. doi: 10.1038/nm.3883. |
[47] | Zhang H, Watanabe R, Berry GJ, et al. Inhibition of JAK⁃STAT signaling suppresses pathogenic immune responses in medium and large vessel vasculitis[J]. Circulation, 2018,137(18):1934⁃1948. doi: 10.1161/CIRCULATIONAHA.117.030423. |
[48] | Matos TR, O'Malley JT, Lowry EL, et al. Clinically resolved psoriatic lesions contain psoriasis⁃specific IL⁃17⁃producing αβ T cell clones[J]. J Clin Invest, 2017,127(11):4031⁃4041. doi: 10.1172/JCI93396. |
[49] | Bangert C, Rindler K, Krausgruber T, et al. Persistence of mature dendritic cells, TH2A, and Tc2 cells characterize clinically resolved atopic dermatitis under IL⁃4Rα blockade[J]. Sci Immunol, 2021,6(55):eabe2749. doi: 10.1126/sciimmunol.abe2749. |
[50] | Liu Y, Wang H, Taylor M, et al. Classification of human chronic inflammatory skin disease based on single⁃cell immune profiling[J]. Sci Immunol, 2022,7(70):eabl9165. doi: 10.1126/sciimmunol.abl9165. |
[1] | Xu Zhongyi, Xing Xiaoxue, Dong Yaqi, Zhang Chengfeng, Xiang Leihong. Retrospective analysis of clinical manifestations and treatment outcomes in 254 patients with melasma in a tertiary grade-A hospital in Shanghai [J]. Chinese Journal of Dermatology, 2025, 58(9): 808-815. |
[2] | Jiang Ziqi, Zhong Judan, Chen Tingqiao, Chen Jin. Pathogenesis and treatment of melasma [J]. Chinese Journal of Dermatology, 2025, 58(9): 868-872. |
[3] | Zhong Jiemin, Li Wei, Zhang Shujuan, Yang Yan, Xue Rujun, Li Xinyi, Ke Yanan, Chen Xiaoyin, Chen Quan. Comparison of the efficacy and safety of nanomicroneedle- versus ultrasound-mediated delivery of tranexamic acid for the treatment of melasma: a randomized controlled study [J]. Chinese Journal of Dermatology, 2025, 58(9): 829-833. |
[4] | Guliziba·Tuersun, Zhao Yanan, Wang Hongjuan, Kang Xiaojing, Qu Yuanyuan. Efficacy of autologous melanocyte transplantation combined with 308-nm light-emitting diode phototherapy at escalating doses in the treatment of refractory stable vitiligo: a clinical observation [J]. Chinese Journal of Dermatology, 2025, 58(9): 852-856. |
[5] | Dai Yeqin, Song Xiuzu. Application of hair follicle transplantation and follicular cell suspension transplantation in the treatment of vitiligo [J]. Chinese Journal of Dermatology, 2025, 58(9): 882-885. |
[6] | Zhou Miaoni, Sheng Anqi, Fu Lifang, Jin Rong, Xu Wen, Wei Xiaodong, Xu Ai′e . Efficacy and safety of an antioxidant gel containing tea polyphenols combined with narrow-band ultraviolet B in the treatment of vitiligo: a single-center randomized controlled trial [J]. Chinese Journal of Dermatology, 2025, 58(9): 834-838. |
[7] | Zhan Jinshan, Xuan Xiuyun, Cao Juanmei, Chen Fangqi, Huang Changzheng. Progress in treatment of anti-melanoma differentiation-associated gene 5 antibody-positive dermatomyositis [J]. Chinese Journal of Dermatology, 2025, 58(8): 785-788. |
[8] | Luo Shuaihantian, Long Hai, Lu Qianjin. Research advances in systemic lupus erythematosus in 2024 [J]. Chinese Journal of Dermatology, 2025, 58(8): 777-780. |
[9] | Bai Qi, Zhu Mingfang, Wu Qingting, Ji Xiaotian, Yang Huiyi, Ma Liping, Zhou Jiaxin. Effect of sinomenine on skin lesions in 2,4-dinitrochlorobenzene-induced atopic dermatitis-like mouse models [J]. Chinese Journal of Dermatology, 2025, 58(8): 759-766. |
[10] | Lin Jinran, Leong Hiochon, Liu Qingmei, Wu Wenyu. Androgenetic alopecia and metabolic syndrome: from mechanisms to treatment strategies [J]. Chinese Journal of Dermatology, 2025, 58(7): 591-594. |
[11] | Wang Qin, Lin Jinran, Liu Qingmei, Wu Wenyu, . Oral minoxidil in the treatment of alopecia areata [J]. Chinese Journal of Dermatology, 2025, 58(7): 653-656. |
[12] | Hair Research Group, Chinese Society of Dermatology. Chinese expert consensus on the diagnosis and treatment of lichen planopilaris/frontal fibrosing alopecia (2025 edition) [J]. Chinese Journal of Dermatology, 2025, 58(7): 583-590. |
[13] | Li Yu, Wang Ziwei, Ye Rongjia, Li Rong, Zhu Yan, Zhang Xiaohua, Huang Dan, Ju Mei. Home-based phototherapy implementation and management needs in patients with vitiligo: a questionnaire survey analysis [J]. Chinese Journal of Dermatology, 2025, 58(7): 608-612. |
[14] | Zhang Li, Song Xiuzu. Role of vascular endothelial growth factor in androgenetic alopecia [J]. Chinese Journal of Dermatology, 2025, 58(7): 683-685. |
[15] | Shao Guanghui, Li Yuqian, Chen Qitao, Zhu Qilin, Zhu Jing, Li Zhongming, Du Xufeng, Fan Weixin. Congenital triangular alopecia [J]. Chinese Journal of Dermatology, 2025, 58(7): 668-671. |
|