[1] |
Mily A, Kalsum S, Loreti MG, et al. Polarization of M1 and M2 human monocyte⁃derived cells and analysis with flow cytometry upon Mycobacterium tuberculosis Infection[J]. J Vis Exp, 2020,(163)doi: 10.3791/61807.
|
[2] |
Peeling RW, Mabey D, Kamb ML, et al. Syphilis[J]. Nat Rev Dis Primers, 2017,3:17073. doi: 10.1038/nrdp.2017.73.
|
[3] |
Huang Z, Luo Q, Guo Y, et al. Mycobacterium tuberculosis⁃induced polarization of human macrophage orchestrates the formation and development of tuberculous granulomas in vitro[J/OL]. PLoS One, 2015,10(6):e0129744. doi: 10.1371/journal.pone.0129744.
|
[4] |
Byndloss MX, Tsai AY, Walker GT, et al. Brucella abortus infection of placental trophoblasts triggers endoplasmic reticulum stress⁃mediated cell death and fetal loss via type iv secretion system⁃dependent activation of CHOP[J]. mBio, 2019,10(4). doi: 10.1128/mBio.01538⁃19.
|
[5] |
Rashid HO, Yadav RK, Kim HR, et al. ER stress: autophagy induction, inhibition and selection[J]. Autophagy, 2015,11(11):1956⁃1977. doi: 10.1080/15548627.2015.1091141.
|
[6] |
Moretti J, Blander JM. Cell⁃autonomous stress responses in innate immunity[J]. J Leukoc Biol, 2017,101(1):77⁃86. doi: 10. 1189/jlb.2MR0416⁃201R.
|
[7] |
许卜方, 王千秋, 张津萍, 等. 梅毒螺旋体诱导巨噬细胞分泌的外泌体特征及其对人脐静脉内皮细胞增殖的影响[J]. 中华皮肤科杂志, 2018,51(5):341⁃346. doi: 10.3760/cma.j.issn. 0412⁃4030.2018.05.005.
|
[8] |
Chanput W, Mes JJ, Savelkoul HF, et al. Characterization of polarized THP⁃1 macrophages and polarizing ability of LPS and food compounds[J]. Food Funct, 2013,4(2):266⁃276. doi: 10. 1039/c2fo30156c.
|
[9] |
Cruz AR, Ramirez LG, Zuluaga AV, et al. Immune evasion and recognition of the syphilis spirochete in blood and skin of secondary syphilis patients: two immunologically distinct compartments[J]. PLoS Negl Trop Dis, 2012,6(7):e1717. doi: 10.1371/journal.pntd.0001717.
|
[10] |
Lukehart SA. Activation of macrophages by products of lymphocytes from normal and syphilitic rabbits[J]. Infect Immun, 1982,37(1):64⁃69. doi: 10.1128/IAI.37.1.64⁃69.1982.
|
[11] |
Hawley KL, Cruz AR, Benjamin SJ, et al. IFNγ enhances CD64⁃potentiated phagocytosis of Treponema pallidum opsonized with human syphilitic serum by human macrophages[J]. Front Immunol, 2017,8:1227. doi: 10.3389/fimmu.2017.01227.
|
[12] |
张晓东, 脱朝伟, 王德权等. 巨噬细胞内梅毒螺旋体的超微形态计量学研究[J]. 辽宁医学杂志, 2003,17(1):15⁃16. doi: 10. 3969/j.issn.1001⁃1722.2003.01.008.
|
[13] |
Naj X, Linder S. Actin⁃dependent regulation of Borrelia burgdorferi phagocytosis by macrophages[J]. Curr Top Microbiol Immunol, 2017,399:133⁃154. doi: 10.1007/82_2016_26.
|
[14] |
Hoffman W, Lakkis FG, Chalasani G. B cells, antibodies, and more[J]. Clin J Am Soc Nephrol, 2016,11(1):137⁃154. doi: 10. 2215/CJN.09430915.
|
[15] |
Unanue ER, Askonas BA. The immune response of mice to antigen in macrophages[J]. Immunology, 1968,15(2):287⁃296.
|
[16] |
Kahlert H, Grage⁃Griebenow E, Stüwe HT, et al. T cell reactivity with allergoids: influence of the type of APC[J]. J Immunol, 2000,165(4):1807⁃1815. doi: 10.4049/jimmunol.165.4.1807.
|
[17] |
Grover S, Sharma T, Singh Y, et al. The PGRS domain of Mycobacterium tuberculosis PE_PGRS protein Rv0297 is involved in endoplasmic reticulum stress⁃mediated apoptosis through Toll⁃like receptor 4[J]. mBio, 2018,9(3):e01017⁃18. doi: 10.1128/mBio.01017⁃18.
|
[18] |
Muriach M, Flores⁃Bellver M, Romero FJ, et al. Diabetes and the brain: oxidative stress, inflammation, and autophagy[J]. Oxid Med Cell Longev, 2014,2014:102158. doi: 10.1155/2014/102158.
|
[19] |
Li W, Zhou X, Cai J, et al. Recombinant Treponema pallidum protein Tp0768 promotes proinflammatory cytokine secretion of macrophages through ER stress and ROS/NF⁃κB pathway[J]. Appl Microbiol Biotechnol, 2021,105(1):353⁃366. doi: 10.1007/s00253⁃020⁃11018⁃8.
|
[20] |
Duan L, Gan H, Golan DE, et al. Critical role of mitochondrial damage in determining outcome of macrophage infection with Mycobacterium tuberculosis[J]. J Immunol, 2002,169(9):5181⁃5187. doi: 10.4049/jimmunol.169.9.5181.
|
[21] |
Peeling RW, Mabey D, Kamb ML, et al. Syphilis[J]. Nat Rev Dis Primers, 2017,3:17073. doi: 10.1038/nrdp.2017.73.
|
[22] |
Parveen N, Fernandez MC, Haynes AM, et al. Non⁃pathogenic Borrelia burgdorferi expressing Treponema pallidum TprK and Tp0435 antigens as a novel approach to evaluate syphilis vaccine candidates[J]. Vaccine, 2019,37(13):1807⁃1818. doi: 10.1016/j.vaccine.2019.02.022.
|
[23] |
Grillová L, Bawa T, Mikalová L, et al. Molecular characterization of Treponema pallidum subsp. pallidum in Switzerland and France with a new multilocus sequence typing scheme[J]. PLoS One, 2018,13(7):e0200773. doi: 10.1371/journal.pone.0200773.
|
[24] |
Giacani L, Denisenko O, Tompa M, et al. Identification of the Treponema pallidum subsp. pallidum TP0092 (RpoE) regulon and its implications for pathogen persistence in the host and syphilis pathogenesis[J]. J Bacteriol, 2013,195(4):896⁃907. doi: 10.1128/JB.01973⁃12.
|
[25] |
Fitzgerald TJ. The Th1/Th2⁃like switch in syphilitic infection: is it detrimental?[J]. Infect Immun, 1992,60(9):3475⁃3479. doi: 10.1128/IAI.60.9.3475⁃3479.1992.
|
[26] |
Xia W, Zhao J, Su B, et al. Syphilitic infection impairs immunity by inducing both apoptosis and pyroptosis of CD4(+) and CD8(+) T lymphocytes[J]. Innate Immun, 2021,27(1):99⁃106. doi: 10.1177/1753425920952840.
|
[27] |
Lim YJ, Choi JA, Lee JH, et al. Mycobacterium tuberculosis 38⁃kDa antigen induces endoplasmic reticulum stress⁃mediated apoptosis via toll⁃like receptor 2/4[J]. Apoptosis, 2015,20(3):358⁃370. doi: 10.1007/s10495⁃014⁃1080⁃2.
|
[28] |
Jouanguy E, Döffinger R, Dupuis S, et al. IL⁃12 and IFN⁃gamma in host defense against mycobacteria and salmonella in mice and men[J]. Curr Opin Immunol, 1999,11(3):346⁃351. doi: 10. 1016/s0952⁃7915(99)80055⁃7.
|
[29] |
Rottenberg ME, Gigliotti⁃Rothfuchs A, Wigzell H. The role of IFN⁃gamma in the outcome of chlamydial infection[J]. Curr Opin Immunol, 2002,14(4):444⁃451. doi: 10.1016/s0952⁃7915(02)00361⁃8.
|
[30] |
Shaughnessy LM, Swanson JA. The role of the activated macrophage in clearing Listeria monocytogenes infection[J]. Front Biosci, 2007,12:2683⁃2692. doi: 10.2741/2364.
|
[31] |
Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment[J]. F1000Prime Rep, 2014,6:13. doi: 10.12703/P6⁃13.
|
[32] |
彭卓颖, 李想, 丛喆, 等. 流式细胞术分析PMA诱导THP⁃1分化为巨噬细胞的表型特征[J]. 中国比较医学杂志, 2017,27(10):10⁃15,22. doi: 10.3969.j.issn.1671⁃7856.2017.10.003.
|
[33] |
Shapouri⁃Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018,233(9):6425⁃6440. doi: 10.1002/jcp.26429.
|
[34] |
Pidwill GR, Gibson JF, Cole J, et al. The role of macrophages in Staphylococcus aureus infection[J]. Front Immunol, 2020,11:620339. doi: 10.3389/fimmu.2020.620339.
|
[35] |
Huang Z, Luo Q, Guo Y, et al. Mycobacterium tuberculosis⁃induced polarization of human macrophage orchestrates the formation and development of tuberculous granulomas in vitro[J]. PLoS One, 2015,10(6):e0129744. doi: 10.1371/journal.pone.0129744.
|
[36] |
Lukehart SA, Shaffer JM, Baker⁃Zander SA. A subpopulation of Treponema pallidum is resistant to phagocytosis: possible mechanism of persistence[J]. J Infect Dis, 1992,166(6):1449⁃1453. doi: 10.1093/infdis/166.6.1449.
|
[37] |
Lin LR, Liu W, Zhu XZ, et al. Treponema pallidum promotes macrophage polarization and activates the NLRP3 inflammasome pathway to induce interleukin⁃1β production[J]. BMC Immunol, 2018,19(1):28. doi: 10.1186/s12865⁃018⁃0265⁃9.
|