Chinese Journal of Dermatology ›› 2020, Vol. 53 ›› Issue (9): 751-754.doi: 10.35541/cjd.20190353
• Reviews • Previous Articles Next Articles
Xu Ai′e, Zhou Miaoni, Lin Fuquan
Received:
2019-03-04
Revised:
2020-01-20
Online:
2020-09-15
Published:
2020-08-31
Contact:
Xu Ai′e
E-mail:xuaiehz@msn.com
Supported by:
Xu Ai′e, Zhou Miaoni, Lin Fuquan. Role of melanocytes and relevant cell populations in the occurrence of vitiligo[J]. Chinese Journal of Dermatology, 2020, 53(9): 751-754.doi:10.35541/cjd.20190353
[1] | Xie H, Zhou F, Liu L, et al. Vitiligo: how do oxidative stress-induced autoantigens trigger autoimmunity?[J]. J Dermatol Sci, 2016,81(1):3⁃9. doi: 10.1016/j.jdermsci.2015.09.003. |
[2] | Bickers DR, Athar M. Oxidative stress in the pathogenesis of skin disease[J]. J Invest Dermatol, 2006,126(12):2565⁃2575. doi: 10.1038/sj.jid.5700340. |
[3] | Hasse S, Gibbons NC, Rokos H, et al. Perturbed 6⁃tetrahydrobiopterin recycling via decreased dihydropteridine reductase in vitiligo: more evidence for H2O2 stress[J]. J Invest Dermatol, 2004,122(2):307⁃313. doi: 10.1046/j.0022⁃202X.2004. 22230.x. |
[4] | Zhang Y, Liu L, Jin L, et al. Oxidative stress⁃induced calreticulin expression and translocation: new insights into the destruction of melanocytes[J]. J Invest Dermatol, 2014,134(1):183⁃191. doi: 10.1038/jid.2013.268. |
[5] | Kang P, Zhang W, Chen X, et al. TRPM2 mediates mitochondria⁃dependent apoptosis of melanocytes under oxidative stress[J]. Free Radic Biol Med, 2018,126:259⁃268. doi: 10.1016/j.free radbiomed.2018.08.022. |
[6] | Passeron T, Ortonne JP. Activation of the unfolded protein response in vitiligo: the missing link?[J]. J Invest Dermatol, 2012,132(11):2502⁃2504. doi: 10.1038/jid.2012.328. |
[7] | Toosi S, Orlow SJ, Manga P. Vitiligo⁃inducing phenols activate the unfolded protein response in melanocytes resulting in upregulation of IL6 and IL8[J]. J Invest Dermatol, 2012,132(11):2601⁃2609. doi: 10.1038/jid.2012.181. |
[8] | Ezzedine K, Eleftheriadou V, Whitton M, et al. Vitiligo[J]. Lancet, 2015, 386(9988): 74⁃84. doi: 10.1016/S0140⁃6736(14)60763⁃7. |
[9] | Denman CJ, McCracken J, Hariharan V, et al. HSP70i accelerates depigmentation in a mouse model of autoimmune vitiligo[J]. J Invest Dermatol, 2008,128(8):2041⁃2048. doi: 10.1038/jid.2008. 45. |
[10] | Henning SW, Fernandez MF, Mahon JP, et al. HSP70iQ435A⁃encoding DNA repigments vitiligo lesions in sinclair swine[J]. J Invest Dermatol, 2018,138(12):2531⁃2539. doi: 10.1016/j.jid. 2018.06.186. |
[11] | Frisoli ML, Harris JE. Treatment with modified heat shock protein repigments vitiligo lesions in sinclair swine[J]. J Invest Dermatol, 2018,138(12):2505⁃2506. doi: 10.1016/j.jid.2018.08. 003. |
[12] | Mosenson JA, Eby JM, Hernandez C, et al. A central role for inducible heat⁃shock protein 70 in autoimmune vitiligo[J]. Exp Dermatol, 2013,22(9):566⁃569. doi: 10.1111/exd.12183. |
[13] | Jacquemin C, Rambert J, Guillet S, et al. Heat shock protein 70 potentiates interferon alpha production by plasmacytoid dendritic cells: relevance for cutaneous lupus and vitiligo pathogenesis[J]. Br J Dermatol, 2017,177(5):1367⁃1375. doi: 10.1111/bjd.15550. |
[14] | Mosenson JA, Zloza A, Klarquist J, et al. HSP70i is a critical component of the immune response leading to vitiligo[J]. Pigment Cell Melanoma Res, 2012,25(1):88⁃98. doi: 10.1111/j.1755⁃148X.2011.00916.x. |
[15] | Qiao Z, Wang X, Xiang L, et al. Dysfunction of autophagy: a possible mechanism involved in the pathogenesis of vitiligo by breaking the redox balance of melanocytes[J]. Oxid Med Cell Longev, 2016,2016:3401570. doi: 10.1155/2016/3401570. |
[16] | He Y, Li S, Zhang W, et al. Dysregulated autophagy increased melanocyte sensitivity to H2O2⁃induced oxidative stress in vitiligo[J]. Sci Rep, 2017,7:42394. doi: 10.1038/srep42394. |
[17] | Ni C, Narzt MS, Nagelreiter IM, et al. Autophagy deficient melanocytes display a senescence associated secretory phenotype that includes oxidized lipid mediators[J]. Int J Biochem Cell Biol, 2016,81(Pt B):375⁃382. doi: 10.1016/j.biocel. 2016.10.006. |
[18] | Dell′Anna ML, Ottaviani M, Albanesi V, et al. Membrane lipid alterations as a possible basis for melanocyte degeneration in vitiligo[J]. J Invest Dermatol, 2007,127(5):1226⁃1233. doi: 10. 1038/sj.jid.5700700. |
[19] | Bellei B, Pitisci A, Ottaviani M, et al. Vitiligo: a possible model of degenerative diseases[J/OL]. PLoS One, 2013, 8(3):e59782. doi: 10.1371/journal.pone.0059782. |
[20] | Prignano F, Pescitelli L, Becatti M, et al. Ultrastructural and functional alterations of mitochondria in perilesional vitiligo skin[J]. J Dermatol Sci, 2009,54(3):157⁃167. doi: 10.1016/j.jdermsci. 2009.02.004. |
[21] | Bondanza S, Maurelli R, Paterna P, et al. Keratinocyte cultures from involved skin in vitiligo patients show an impaired in vitro behaviour[J]. Pigment Cell Res, 2007,20(4):288⁃300. doi: 10. 1111/j.1600⁃0749.2007.00385.x. |
[22] | Lee AY, Kim NH, Choi WI, et al. Less keratinocyte⁃derived factors related to more keratinocyte apoptosis in depigmented than normally pigmented suction⁃blistered epidermis may cause passive melanocyte death in vitiligo[J]. J Invest Dermatol, 2005,124(5):976⁃983. doi: 10.1111/j.0022⁃202X.2005.23667.x. |
[23] | Bastonini E, Bellei B, Filoni A, et al. Involvement of non⁃melanocytic skin cells in vitiligo[J]. Exp Dermatol, 2019,28(6):667⁃673. doi: 10.1111/exd.13868. |
[24] | Rashighi M, Agarwal P, Richmond JM, et al. CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo[J]. Sci Transl Med, 2014,6(223):223 ra23. doi: 10.1126/scitranslmed.3007811. |
[25] | Agarwal P, Rashighi M, Essien KI, et al. Simvastatin prevents and reverses depigmentation in a mouse model of vitiligo[J]. J Invest Dermatol, 2015,135(4):1080⁃1088. doi: 10.1038/jid.2014. 529. |
[26] | Craiglow BG, King BA. Tofacitinib citrate for the treatment of vitiligo: a pathogenesis⁃directed therapy[J]. JAMA Dermatol, 2015,151(10):1110⁃1112. doi: 10.1001/jamadermatol.2015.1520. |
[27] | Speeckaert R, Speeckaert M, De Schepper S, et al. Biomarkers of disease activity in vitiligo: a systematic review[J]. Autoimmun Rev, 2017,16(9):937⁃945. doi: 10.1016/j.autrev.2017.07.005. |
[28] | Benzekri L, Gauthier Y. Clinical markers of vitiligo activity[J]. J Am Acad Dermatol, 2017,76(5):856⁃862. doi: 10.1016/j.jaad. 2016.12.040. |
[29] | Kovacs D, Bastonini E, Ottaviani M, et al. Vitiligo skin: exploring the dermal compartment[J]. J Invest Dermatol, 2018,138(2):394⁃404. doi: 10.1016/j.jid.2017.06.033. |
[30] | Rani S, Chauhan R, Parsad D, et al. Effect of Dickkopf1 on the senescence of melanocytes: in vitro study[J]. Arch Dermatol Res, 2018,310(4):343⁃350. doi: 10.1007/s00403⁃018⁃1820⁃1. |
[31] | Lotti T, Hercogova J, Fabrizi G. Advances in the treatment options for vitiligo: activated low⁃dose cytokines⁃based therapy[J]. Expert Opin Pharmacother, 2015,16(16):2485⁃2496. doi: 10. 1517/14656566.2015.1087508. |
[32] | Singh RK, Lee KM, Vujkovic⁃Cvijin I, et al. The role of IL⁃17 in vitiligo: a review[J]. Autoimmun Rev, 2016,15(4):397⁃404. doi: 10.1016/j.autrev.2016.01.004. |
[33] | Le Poole IC, Mehrotra S. Replenishing regulatory T cells to halt depigmentation in vitiligo[J]. J Investig Dermatol Symp Proc, 2017,18(2):S38⁃S45. doi: 10.1016/j.jisp.2016.10.023. |
[34] | Shin J, Kang HY, Kim KH, et al. Involvement of T cells in early evolving segmental vitiligo[J]. Clin Exp Dermatol, 2016,41(6):671⁃674. doi: 10.1111/ced.12852. |
[35] | Wu J, Zhou M, Wan Y, et al. CD8+ T cells from vitiligo perilesional margins induce autologous melanocyte apoptosis[J]. Mol Med Rep, 2013,7(1):237⁃241. doi: 10.3892/mmr.2012.1117. |
[36] | Clark RA. Resident memory T cells in human health and disease[J]. Sci Transl Med, 2015,7(269):269rv1. doi: 10.1126/scitran slmed.3010641. |
[37] | Topham DJ, Reilly EC. Tissue⁃resident memory CD8+ T cells: from phenotype to function[J]. Front Immunol, 2018,9:515. doi: 10.3389/fimmu.2018.00515. |
[38] | Milner JJ, Goldrath AW. Transcriptional programming of tissue⁃resident memory CD8+ T cells[J]. Curr Opin Immunol, 2018,51:162⁃169. doi: 10.1016/j.coi.2018.03.017. |
[39] | Boniface K, Jacquemin C, Darrigade AS, et al. Vitiligo skin is imprinted with resident memory CD8 T cells expressing CXCR3[J]. J Invest Dermatol, 2018,138(2):355⁃364. doi: 10.1016/j.jid.2017.08.038. |
[40] | Malik BT, Byrne KT, Vella JL, et al. Resident memory T cells in the skin mediate durable immunity to melanoma[J]. Sci Immunol, 2017,2(10). pii: eaam6346. doi: 10.1126/sciimmunol.aam6346. |
[41] | Boniface K, Seneschal J. Vitiligo as a skin memory disease: the need for early intervention with immunomodulating agents and a maintenance therapy to target resident memory T cells[J]. Exp Dermatol, 2019,28(6):656⁃661. doi: 10.1111/exd.13879. |
[42] | Richmond JM, Strassner JP, Zapata L Jr, et al. Antibody blockade of IL⁃15 signaling has the potential to durably reverse vitiligo[J]. Sci Transl Med, 2018,10(450). pii:eaam7710. doi: 10.1126/scitranslmed.aam7710. |
[1] | Lei Jiehao, Hong Weisong, Lin Fuquan, Hu Wenting, Xu Ai′e. In vitro culture of melanocytes from segmental vitiligo-like nevus depigmentosus lesions and its clinical significance [J]. Chinese Journal of Dermatology, 2022, 55(9): 798-802. |
[2] | Zhou Xue, Yu Zengyang, Chen Youdong, Guo Chunyuan, Yu Qian, Hu Yifan, Yao Lingling, Shi Yuling, . Tumor necrosis factor α-mediated low expression of fatty acid desaturase 2 in psoriasis [J]. Chinese Journal of Dermatology, 2022, 55(9): 752-758. |
[3] | Yao Lingling, Yu Zengyang, Guo Chunyuan, Zhou Jing, Cui Lian, Yu Qian, Yu Yingyuan, Zhou Xue, Cai Jiangluyi, Shi Yuling, . Changes in circadian gene cryptochrome 2 expression in mouse models of psoriasis and HaCaT cells and their underlying mechanisms [J]. Chinese Journal of Dermatology, 2022, 55(9): 759-766. |
[4] | Jia Weixue, Wang Jianbo, Luo Lingling, Zhang Yuanyuan, Wang Xue, Guo Youming, Kong Lingzhuo, Jiang Yiqun, Li Chengrang, . Effect of HaCaT cells with CRISPR-Cas9-induced KRT5 mutation on co-cultured human melanocytes [J]. Chinese Journal of Dermatology, 2022, 55(8): 659-664. |
[5] | Bao Yingqiu, Zhang Yanjun, Li Bo, Gong Jing, Fu Yu, Xu Zhe. Gene therapy for recessive dystrophic epidermolysis bullosa [J]. Chinese Journal of Dermatology, 2022, 55(8): 739-743. |
[6] | Li Baizhang, Kang Pan, Zhang Xiaoying, Zhu Guannan, Li Shuli, Li Chunying. Construction and validation of a risk prediction model for diabetes mellitus in patients with vitiligo [J]. Chinese Journal of Dermatology, 2022, 55(7): 576-582. |
[7] | Jian Zhe, Zhang Jia. Research progress and thinking in mouse models of vitiligo-like depigmentation [J]. Chinese Journal of Dermatology, 2022, 55(7): 622-628. |
[8] | Xu Cui, He Yong, Wu Yilin, Lyu Qun, Li Liming, Jiang Mingjun. Establishment and identification of human immortalized keratinocytes stably expressing human papillomavirus type 16 E6/E7 gene [J]. Chinese Journal of Dermatology, 2022, 55(6): 501-507. |
[9] | Xia Na, Gao Chao, Liu Xuan, Zou Dongxu, Ji Guangju, Cai Hong, . Role of umbilical cord mesenchymal stem cell-derived exosomes in acute skin wound healing [J]. Chinese Journal of Dermatology, 2022, 55(5): 382-388. |
[10] | Ainiwaer·Talifu, Xiong Cheng, Refuhati·Saimaiti, Yusufu·Maitinuer, Tuerxun·Wufuer, Akenmujiang·Aierken, Julaiti·Abuduwayiti, Maimaitiaili·Kade. Screening and analysis of differentially expressed genes in vitiligo using bioinformatics methods [J]. Chinese Journal of Dermatology, 2022, 55(5): 421-425. |
[11] | Fu Chao, Wu Jiaona, Lang Wenchao, Gao Fei, Niu Guiye, Bian Peiwen, Gao Minhong, Si Xiaoqing, Xin Linlin. Role of dermoscopy in assessing vitiligo activity [J]. Chinese Journal of Dermatology, 2022, 55(3): 268-271. |
[12] | Zha Zhen, Solang Quzong, Ciren Yangji, Bai Yang, Deji Yangzong, Zhang Wei, . Clinical characteristics of 527 patients of Tibetan nationality with vitiligo [J]. Chinese Journal of Dermatology, 2022, 0(2): 20210940-e20210940. |
[13] | Ge Xinhong, Jiao Yaning, Ge Minghao, Ma Yingdong, Shi Yue, Wang Yu, Liu Lingling. Expression of silent information regulator 1 and 3 and hypoxia-inducible factor 1α in cutaneous squamous cell carcinoma tissues and cells [J]. Chinese Journal of Dermatology, 2022, 55(2): 116-122. |
[14] | Chen Yi, Song Xiuzu. Role of transient receptor potential channels in melanocytes and their related diseases [J]. Chinese Journal of Dermatology, 2022, 0(1): 20200958-e20200958. |
[15] | Qu Yingying, Fang Jiaqi, Ouyang Mengting, Wang Mengyao, Huang Xianyin, Zheng Yue, Lai Wei, Xu Qingfang. Regulatory role of circIGF2BP3 in autophagy in photoaged dermal fibroblasts [J]. Chinese Journal of Dermatology, 2022, 55(1): 40-46. |
|