[1] |
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron⁃dependent form of nonapoptotic cell death[J]. Cell, 2012,149(5):1060⁃1072. doi: 10.1016/j.cell.2012.03.042.
|
[2] |
陈丽华, 向阳. 铁死亡在肿瘤免疫治疗的研究进展[J]. 肿瘤预防与治疗, 2022,35(8):765⁃769. doi: 10.3969/j.issn.1674⁃0904.2022.08.014.
|
[3] |
Chen X, Comish PB, Tang D, et al. Characteristics and biomarkers of ferroptosis[J]. Front Cell Dev Biol, 2021,9:637162. doi: 10.3389/fcell.2021.637162.
|
[4] |
Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021,22(4):266⁃282. doi: 10.1038/s41580⁃020⁃00324⁃8.
|
[5] |
Nagasaki T, Schuyler AJ, Zhao J, et al. 15LO1 dictates glutathione redox changes in asthmatic airway epithelium to worsen type 2 inflammation[J]. J Clin Invest, 2022,132(1):e151685. doi: 10.1172/JCI151685.
|
[6] |
Lei G, Zhuang L, Gan B. Targeting ferroptosis as a vulnerability in cancer[J]. Nat Rev Cancer, 2022,22(7):381⁃396. doi: 10. 1038/s41568⁃022⁃00459⁃0.
|
[7] |
Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future[J]. Cell Death Dis, 2020,11(2):88. doi: 10.1038/s41419⁃020⁃2298⁃2.
|
[8] |
Lei G, Zhang Y, Hong T, et al. Ferroptosis as a mechanism to mediate p53 function in tumor radiosensitivity[J]. Oncogene, 2021,40(20):3533⁃3547. doi: 10.1038/s41388⁃021⁃01790⁃w.
|
[9] |
Chu B, Kon N, Chen D, et al. ALOX12 is required for p53⁃mediated tumour suppression through a distinct ferroptosis pathway[J]. Nat Cell Biol, 2019,21(5):579⁃591. doi: 10.1038/s41556⁃019⁃0305⁃6.
|
[10] |
Ji H, Wang W, Li X, et al. p53: a double⁃edged sword in tumor ferroptosis[J]. Pharmacol Res, 2022,177:106013. doi: 10.1016/j.phrs.2021.106013.
|
[11] |
Wang Y, Zhao Y, Ye T, et al. Ferroptosis signaling and regulators in atherosclerosis[J]. Front Cell Dev Biol, 2021,9:809457. doi: 10.3389/fcell.2021.809457.
|
[12] |
Dodson M, Castro⁃Portuguez R, Zhang DD. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis[J]. Redox Biol, 2019,23:101107. doi: 10.1016/j.redox.2019.101107.
|
[13] |
Zhao Y, Lu J, Mao A, et al. Autophagy inhibition plays a protective role in ferroptosis induced by Alcohol via the p62⁃Keap1⁃Nrf2 pathway[J]. J Agric Food Chem, 2021,69(33):9671⁃9683. doi: 10.1021/acs.jafc.1c03751.
|
[14] |
Chen J, Li X, Ge C, et al. The multifaceted role of ferroptosis in liver disease[J]. Cell Death Differ, 2022,29(3):467⁃480. doi: 10.1038/s41418⁃022⁃00941⁃0.
|
[15] |
Doll S, Freitas FP, Shah R, et al. FSP1 is a glutathione⁃independent ferroptosis suppressor[J]. Nature, 2019,575(7784):693⁃698. doi: 10.1038/s41586⁃019⁃1707⁃0.
|
[16] |
Bersuker K, Hendricks JM, Li Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature, 2019,575(7784):688⁃692. doi: 10.1038/s41586⁃019⁃1705⁃2.
|
[17] |
Wang W, Green M, Choi JE, et al. CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy[J]. Nature, 2019,569(7755):270⁃274. doi: 10.1038/s41586⁃019⁃1170⁃y.
|
[18] |
Wu J, Minikes AM, Gao M, et al. Intercellular interaction dictates cancer cell ferroptosis via NF2⁃YAP signalling[J]. Nature, 2019,572(7769):402⁃406. doi: 10.1038/s41586⁃019⁃1426⁃6.
|
[19] |
Lee H, Zandkarimi F, Zhang Y, et al. Energy⁃stress⁃mediated AMPK activation inhibits ferroptosis[J]. Nat Cell Biol, 2020,22(2):225⁃234. doi: 10.1038/s41556⁃020⁃0461⁃8.
|
[20] |
李春英, 李舒丽. 白癜风发病机制研究热点解析[J]. 中华皮肤科杂志, 2019,52(9):593⁃597. doi: 10.3760/cma.j.issn.0412⁃4030.2019.09.001.
|
[21] |
Xuan Y, Yang Y, Xiang L, et al. The role of oxidative stress in the pathogenesis of vitiligo: a culprit for melanocyte death[J]. Oxid Med Cell Longev, 2022,2022:8498472. doi: 10.1155/2022/8498472.
|
[22] |
Villalpando⁃Rodriguez GE, Blankstein AR, Konzelman C, et al. Lysosomal destabilizing drug siramesine and the dual tyrosine kinase inhibitor lapatinib induce a synergistic ferroptosis through reduced heme oxygenase⁃1 (HO⁃1) levels[J]. Oxid Med Cell Longev, 2019,2019:9561281. doi: 10.1155/2019/9561281.
|
[23] |
Pelle E, Huang X, Zhang Q, et al. Increased endogenous DNA oxidation correlates to increased iron levels in melanocytes relative to keratinocytes[J]. J Cosmet Sci, 2014,65(5):277⁃284.
|
[24] |
Wu X, Jin S, Yang Y, et al. Altered expression of ferroptosis markers and iron metabolism reveals a potential role of ferroptosis in vitiligo[J]. Pigment Cell Melanoma Res, 2022,35(3):328⁃341. doi: 10.1111/pcmr.13032.
|
[25] |
Orlik C, Deibel D, Küblbeck J, et al. Keratinocytes costimulate naive human T cells via CD2: a potential target to prevent the development of proinflammatory Th1 cells in the skin[J]. Cell Mol Immunol, 2020,17(4):380⁃394. doi: 10.1038/s41423⁃019⁃0261⁃x.
|
[26] |
Shou Y, Yang L, Yang Y, et al. Inhibition of keratinocyte ferroptosis suppresses psoriatic inflammation[J]. Cell Death Dis, 2021,12(11):1009. doi: 10.1038/s41419⁃021⁃04284⁃5.
|
[27] |
Rashmi R, Yuti AM, Basavaraj KH. Enhanced ferritin/iron ratio in psoriasis[J]. Indian J Med Res, 2012,135(5):662⁃665.
|
[28] |
Shahidi⁃Dadras M, Namazi N, Younespour S. Comparative analysis of serum copper, iron, ceruloplasmin, and transferrin levels in mild and severe psoriasis vulgaris in iranian patients[J]. Indian Dermatol Online J, 2017,8(4):250⁃253. doi: 10. 4103/idoj.IDOJ_230_16.
|
[29] |
Ahmed B, Qadir MI, Ghafoor S. Malignant melanoma: skin cancer⁃diagnosis, prevention, and treatment[J]. Crit Rev Eukaryot Gene Expr, 2020,30(4):291⁃297. doi: 10.1615/Crit RevEukaryotGeneExpr.2020028454.
|
[30] |
Wang Z, Jin D, Ma D, et al. Ferroptosis suppressed the growth of melanoma that may be related to DNA damage[J]. Dermatol Ther, 2019,32(4):e12921. doi: 10.1111/dth.12921.
|
[31] |
Hartman ML. Non⁃apoptotic cell death signaling pathways in melanoma[J]. Int J Mol Sci, 2020,21(8):2980. doi: 10.3390/ijms21082980.
|
[32] |
Tsoi J, Robert L, Paraiso K, et al. Multi⁃stage differentiation defines melanoma subtypes with differential vulnerability to drug⁃induced iron⁃dependent oxidative stress[J]. Cancer Cell, 2018,33(5):890⁃904. doi: 10.1016/j.ccell.2018.03.017.
|
[33] |
Viswanathan VS, Ryan MJ, Dhruv HD, et al. Dependency of a therapy⁃resistant state of cancer cells on a lipid peroxidase pathway[J]. Nature, 2017,547(7664):453⁃457. doi: 10.1038/nature23007.
|
[34] |
Hangauer MJ, Viswanathan VS, Ryan MJ, et al. Drug⁃tolerant persister cancer cells are vulnerable to GPX4 inhibition[J]. Nature, 2017,551(7679):247⁃250. doi: 10.1038/nature24297.
|
[35] |
Luo M, Wu L, Zhang K, et al. miR⁃137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma[J]. Cell Death Differ, 2018,25(8):1457⁃1472. doi: 10.1038/s41418⁃017⁃0053⁃8.
|
[36] |
Zhang K, Wu L, Zhang P, et al. miR⁃9 regulates ferroptosis by targeting glutamic⁃oxaloacetic transaminase GOT1 in melanoma[J]. Mol Carcinog, 2018,57(11):1566⁃1576. doi: 10.1002/mc. 22878.
|
[37] |
Ubellacker JM, Tasdogan A, Ramesh V, et al. Lymph protects metastasizing melanoma cells from ferroptosis[J]. Nature, 2020,585(7823):113⁃118. doi: 10.1038/s41586⁃020⁃2623⁃z.
|
[38] |
Chen Q, Wang J, Xiang M, et al. The potential role of ferroptosis in systemic lupus erythematosus[J]. Front Immunol, 2022,13:855622. doi: 10.3389/fimmu.2022.855622.
|
[39] |
Li P, Jiang M, Li K, et al. Glutathione peroxidase 4⁃regulated neutrophil ferroptosis induces systemic autoimmunity[J]. Nat Immunol, 2021,22(9):1107⁃1117. doi: 10.1038/s41590⁃021⁃00993⁃3.
|
[40] |
Wen Q, Liu J, Kang R, et al. The release and activity of HMGB1 in ferroptosis[J]. Biochem Biophys Res Commun, 2019,510(2):278⁃283. doi: 10.1016/j.bbrc.2019.01.090.
|
[41] |
Vats K, Kruglov O, Mizes A, et al. Keratinocyte death by ferroptosis initiates skin inflammation after UVB exposure[J]. Redox Biol, 2021,47:102143. doi: 10.1016/j.redox.2021.102143.
|
[42] |
Liu T, Son M, Diamond B. HMGB1 in systemic lupus erythematosus[J]. Front Immunol, 2020,11:1057. doi: 10.3389/fimmu.2020.01057.
|
[43] |
Ni S, Yuan Y, Kuang Y, et al. Iron metabolism and immune regulation[J]. Front Immunol, 2022,13:816282. doi: 10.3389/fimmu.2022.816282.
|