| [1] |
Liu Y, Tosti A, Wang E, et al. Androgenetic alopecia[J]. Nat Rev Dis Primers, 2025,11(1):73. DOI: 10.1038/s41572⁃025⁃00656⁃9.
|
| [2] |
沈林霞, 赵惠涓, 林尽染, 等. 男性雄激素性秃发患者血清免疫球蛋白G N⁃糖链特征研究[J]. 中华皮肤科杂志, 2025,58(7):595⁃602. DOI: 10.35541/cjd.20240506.
|
| [3] |
周城, 范卫新, 方红, 等. 中国雄激素性秃发诊疗指南(2023)[J]. 临床皮肤科杂志, 2024,53(12):752⁃758. DOI: 10.16761/j.cnki.1000⁃4963.2024.12.015.
|
| [4] |
Charoensuksira S, Meephansan J, Vanichvongvan R, et al. Comparative proteomic analysis of male and female androgenetic alopecia: elucidating gender⁃specific molecular patterns[J]. Arch Dermatol Res, 2024,316(10):721. DOI: 10.1007/s00403⁃024⁃03453⁃8.
|
| [5] |
Li Y, Dong T, Wan S, et al. Application of multi⁃omics techniques to androgenetic alopecia: current status and perspectives[J]. Comput Struct Biotechnol J, 2024,23:2623⁃2636. DOI: 10.1016/j.csbj.2024.06.026.
|
| [6] |
Li S, Wang X, Liu G, et al. Methionine modulates the growth and development of heat⁃stressed dermal papilla cells via the Wnt/β⁃catenin signaling pathway[J]. Int J Mol Sci, 2025,26(4):1495. DOI: 10.3390/ijms26041495.
|
| [7] |
Yue L, Lu Z, Guo T, et al. Key genes and metabolites that regulate wool fibre diameter identified by combined transcriptome and metabolome analysis[J]. Genomics, 2024,116(5):110886. DOI: 10.1016/j.ygeno.2024.110886.
|
| [8] |
Mehta D, Scandola S, Uhrig RG. BoxCar and library⁃free data⁃independent acquisition substantially improve the depth, range, and completeness of label⁃free quantitative proteomics[J]. Anal Chem, 2022,94(2):793⁃802. DOI: 10.1021/acs.analchem.1c03338.
|
| [9] |
Gupta S, Sing JC, Röst HL. Achieving quantitative reproducibility in label⁃free multisite DIA experiments through multirun alignment[J]. Commun Biol, 2023,6(1):1101. DOI: 10.1038/s42003⁃023⁃05437⁃2.
|
| [10] |
Shi X, Tuan H, Na X, et al. The association between sugar⁃sweetened beverages and male pattern hair loss in young men[J]. Nutrients, 2023,15(1):214. DOI: 10.3390/nu15010214.
|
| [11] |
汪丽俐, 杨斌, 罗颖. 女性雄激素性秃发患者614例家族史和血清双氢睾酮水平与其发病的相关性分析[J]. 中华皮肤科杂志, 2024,57(12):1127⁃1129. DOI: 10.35541/cjd.20230337.
|
| [12] |
Gupta AK, Taylor D, Ravi SP, et al. A bibliometric analysis of alternative drug therapy options in the treatment of androgenetic alopecia[J]. J Cosmet Dermatol, 2024,23(10):3287⁃3294. DOI: 10.1111/jocd.16427.
|
| [13] |
Dowell JA, Wright LJ, Armstrong EA, et al. Benchmarking quantitative performance in label⁃free proteomics[J]. ACS Omega, 2021,6(4):2494⁃2504. DOI: 10.1021/acsomega.0c04030.
|
| [14] |
Lou R, Cao Y, Li S, et al. Benchmarking commonly used software suites and analysis workflows for DIA proteomics and phosphoproteomics[J]. Nat Commun, 2023,14(1):94. DOI: 10. 1038/s41467⁃022⁃35740⁃1.
|
| [15] |
Nagasawa T, Sakamaki K, Yoshida A, et al. Reciprocal fluctuations in lipoprotein lipase, glycosylphosphatidylinositol⁃anchored high⁃density lipoprotein⁃binding protein 1, and hepatic triglyceride lipase levels in the peripheral bloodstream are correlated with insulin resistance[J]. Nutrients, 2025,17(11):1880. DOI: 10.3390/nu17111880.
|
| [16] |
Zambon A, Deeb SS, Pauletto P, et al. Hepatic lipase: a marker for cardiovascular disease risk and response to therapy[J]. Curr Opin Lipidol, 2003,14(2):179⁃189. DOI: 10.1097/00041433⁃200304000⁃00010.
|
| [17] |
de Hevia JO, López⁃González ÁA, Ramírez⁃Manent JI, et al. Cross⁃sectional and longitudinal assessment of sociodemographic and lifestyle determinants of metabolic syndrome and hypertriglyceridemic waist phenotypes in 139,634 Spanish workers[J]. Metabolites, 2025,15(7):474. DOI: 10.3390/metabo 15070474.
|
| [18] |
Zhang C, Qiao S, Wu J, et al. A new insulin⁃sensitive enhancer from Silene viscidula, WPTS, treats type 2 diabetes by ameliorating insulin resistance, reducing dyslipidemia, and promoting proliferation of islet β cells[J]. Pharmacol Res, 2021,165:105416. DOI: 10.1016/j.phrs.2020.105416.
|
| [19] |
Gierach M, Junik R. Insulin resistance in metabolic syndrome depending on the occurrence of its components[J]. Endokrynol Pol, 2021,72(3):243⁃248. DOI: 10.5603/EP.a2021.0037.
|
| [20] |
Pihlajamäki J, Karjalainen L, Karhapää P, et al. G⁃250A substitution in promoter of hepatic lipase gene is associated with dyslipidemia and insulin resistance in healthy control subjects and in members of families with familial combined hyperlipidemia[J]. Arterioscler Thromb Vasc Biol, 2000,20(7):1789⁃1795. DOI: 10.1161/01.atv.20.7.1789.
|
| [21] |
Brudaşcă I, Cucuianu M. Pathogenic role of abnormal fatty acids and adipokines in the portal flow. Relevance for metabolic syndrome, hepatic steatosis and steatohepatitis[J]. Rom J Intern Med, 2007,45(2):149⁃157.
|
| [22] |
Liang Y, Tang X, Zhang X, et al. Adipose mesenchymal stromal cell⁃derived exosomes carrying MiR⁃122⁃5p antagonize the inhibitory effect of dihydrotestosterone on hair follicles by targeting the TGF⁃β1/SMAD3 signaling pathway[J]. Int J Mol Sci, 2023,24(6):5703. DOI: 10.3390/ijms24065703.
|
| [23] |
林尽染, 梁晓进, 刘庆梅, 等. 雄激素性秃发与代谢综合征的关联: 从发病机制到治疗策略[J]. 中华皮肤科杂志, 2025,58(7):591⁃594. DOI: 10.35541/cjd.20240545.
|
| [24] |
Qiu Y, Zhou X, Fu S, et al. Systematic review and meta⁃analysis of the association between metabolic syndrome and androgenetic alopecia [J]. Acta Derm Venereol, 2022,102:adv00645. DOI: 10.2340/actadv.v101.1012.
|
| [25] |
吴大兴, 吴丽峰, 杨宗兴. 雄激素性脱发与代谢综合征关系的meta分析[J]. 浙江大学学报(医学版), 2014,43(5):597⁃601. DOI: 10.3785/j.issn.1008⁃9292.2014.09.016.
|
| [26] |
Summerfield JA, Applebaum⁃Bowden D, Hazzard WR. Effects of diet and age on lipoprotein lipase and hepatic triglyceride lipase activities in the rat[J]. Proc Soc Exp Biol Med, 1984,175(2):158⁃163. DOI: 10.3181/00379727⁃175⁃41781.
|