| [1] |
Gomes⁃Neto A, Aguilera P, Prieto L, et al. Efficacy of a daily protective moisturizer with high UVB and UVA photoprotection in decreasing ultraviolet damage: evaluation by reflectance confocal microscopy[J]. Acta Derm Venereol, 2017,97(10):1196⁃1201. DOI: 10.2340/00015555⁃2736.
|
| [2] |
Jeayeng S, Saelim M, Muanjumpon P, et al. Protective effects of keratinocyte⁃derived GCSF and CCL20 on UVB⁃induced melanocyte damage[J]. Cells, 2024,13(19):1661. DOI: 10.3390/ cells13191661.
|
| [3] |
Park J, Woo YK, Cho HJ. Regulation of anti⁃oxidative, anti⁃inflammatory, and anti⁃apoptotic activity of advanced cooling composition (ACC) in UVB⁃irradiated human HaCaT keratinocytes[J]. Int J Mol Sci, 2020,21(18):6527. DOI: 10. 3390/ijms21186527.
|
| [4] |
Vats K, Kruglov O, Mizes A, et al. Keratinocyte death by ferroptosis initiates skin inflammation after UVB exposure[J]. Redox Biol, 2021,47:102143. DOI: 10.1016/j.redox.2021.102143.
|
| [5] |
Wang K, Lin Y, Zhou D, et al. Unveiling ferroptosis: a new frontier in skin disease research[J]. Front Immunol, 2024,15:1485523. DOI: 10.3389/fimmu.2024.1485523.
|
| [6] |
Zheng J, Conrad M. The metabolic underpinnings of ferroptosis[J]. Cell Metab, 2020,32(6):920⁃937. DOI: 10.1016/j.cmet.2020. 10.011.
|
| [7] |
Gan B. ACSL4, PUFA, and ferroptosis: new arsenal in anti⁃tumor immunity[J]. Signal Transduct Target Ther, 2022,7(1):128. DOI: 10.1038/s41392⁃022⁃01004⁃z.
|
| [8] |
Egolf S, Zou J, Anderson A, et al. MLL4 mediates differentiation and tumor suppression through ferroptosis[J]. Sci Adv, 2021,7(50):eabj9141. DOI: 10.1126/sciadv.abj9141.
|
| [9] |
Tu CL, Bikle DD. Role of the calcium⁃sensing receptor in calcium regulation of epidermal differentiation and function[J]. Best Pract Res Clin Endocrinol Metab, 2013,27(3):415⁃427. DOI: 10.1016/j.beem.2013.03.002.
|
| [10] |
Yang C, Rybchyn MS, De Silva W, et al. UV⁃induced DNA damage in skin is reduced by CaSR inhibition[J]. Photochem Photobiol, 2022,98(5):1157⁃1166. DOI: 10.1111/php.13615.
|
| [11] |
Sharma MR, Werth B, Werth VP. Animal models of acute photodamage: comparisons of anatomic, cellular and molecular responses in C57BL/6J, SKH1 and Balb/c mice[J]. Photochem Photobiol, 2011,87(3):690⁃698. DOI: 10.1111/j.1751⁃1097.2011. 00911.x.
|
| [12] |
Hoffmann K, Kaspar K, von Kobyletzki G, et al. UV transmission and UV protection factor (UPF) measured on split skin following exposure to UVB radiation⁃⁃correlation with the minimal erythema dose (MED)[J]. Photodermatol Photoimmunol Photomed, 1999,15(3⁃4):133⁃139. DOI: 10.1111/j.1600⁃0781. 1999.tb00073.x.
|
| [13] |
潘梦, 崔俊宇, 罗娜, 等. 密斑刺鲀鱼皮胶原蛋白对UVB诱导小鼠皮肤急性光损伤的保护作用[J]. 海南热带海洋学院学报, 2024,31(2):113⁃119. DOI: 10.13307/j.issn.2096⁃3122.2024. 02.16.
|
| [14] |
Liu HM, Cheng MY, Xun MH, et al. Possible mechanisms of oxidative stress⁃induced skin cellular senescence, inflammation, and cancer and the therapeutic potential of plant polyphenols[J]. Int J Mol Sci, 2023,24(4):3755. DOI: 10.3390/ijms24043755.
|
| [15] |
Gao S, Guo K, Chen Y, et al. Keratinocyte growth factor 2 ameliorates UVB⁃induced skin damage via activating the AhR/Nrf2 signaling pathway[J]. Front Pharmacol, 2021,12:655281. DOI: 10.3389/fphar.2021.655281.
|
| [16] |
Liu L, Lian N, Shi L, et al. Ferroptosis: mechanism and connections with cutaneous diseases[J]. Front Cell Dev Biol, 2022,10:1079548. DOI: 10.3389/fcell.2022.1079548.
|
| [17] |
Vats K, Tian H, Singh K, et al. Ferroptosis of select skin epithelial cells initiates and maintains chronic systemic immune⁃mediated psoriatic disease[J]. J Clin Invest, 2024,135(2):e183219. DOI: 10.1172/JCI183219.
|
| [18] |
Shou Y, Yang L, Yang Y, et al. Inhibition of keratinocyte ferroptosis suppresses psoriatic inflammation[J]. Cell Death Dis, 2021,12(11):1009. DOI: 10.1038/s41419⁃021⁃04284⁃5.
|
| [19] |
Liang D, Feng Y, Zandkarimi F, et al. Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones[J]. Cell, 2023,186(13):2748⁃2764. DOI: 10.1016/j.cell.2023.05.003.
|
| [20] |
Bikle DD, Ratnam A, Mauro T, et al. Changes in calcium responsiveness and handling during keratinocyte differentiation. Potential role of the calcium receptor[J]. J Clin Invest, 1996,97(4):1085⁃1093. DOI: 10.1172/JCI118501.
|
| [21] |
Gao S, Chen Y, Zhao J, et al. Oat β⁃glucan ameliorates epidermal barrier disruption by upregulating the expression of CaSR through dectin⁃1⁃mediated ERK and p38 signaling pathways[J]. Int J Biol Macromol, 2021,185:876⁃889. DOI: 10.1016/j.ijbiomac.2021.07.002.
|