Chinese Journal of Dermatology ›› 2021, Vol. 54 ›› Issue (10): 910-914.doi: 10.35541/cjd.20191072
• Reviews • Previous Articles Next Articles
Chen Wei1, Xie Heng2, Li Li3
Received:
2019-11-10
Revised:
2020-03-14
Online:
2021-10-15
Published:
2021-09-28
Contact:
Li Li
E-mail:hxskin2017@qq.com
Chen Wei, Xie Heng, Li Li. Extracellular vesicles in dermatology: updates and prospects[J]. Chinese Journal of Dermatology, 2021, 54(10): 910-914.doi:10.35541/cjd.20191072
[1] | Jurj A, Zanoaga O, Braicu C, et al. A comprehensive picture of extracellular vesicles and their contents. molecular transfer to cancer cells[J]. Cancers, 2020,12(2).pii:E298. doi: 10.3390/cancers12020298. |
[2] | van Niel G, D′Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles[J]. Nat Rev Mol Cell Biol, 2018,19(4):213⁃228. doi: 10.1038/nrm.2017.125. |
[3] | Riazifar M, Pone EJ, Lötvall J, et al. Stem cell extracellular vesicles: extended messages of regeneration[J]. Annu Rev Pharmacol Toxicol, 2017,57:125⁃154. doi: 10.1146/annurev⁃pharmtox⁃061616⁃030146. |
[4] | Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends[J]. J Cell Biol, 2013,200(4):373⁃383. doi: 10.1083/jcb.201211138. |
[5] | Xu R, Greening DW, Zhu HJ, et al. Extracellular vesicle isolation and characterization: toward clinical application[J]. J Clin Invest, 2016,126(4):1152⁃1162. doi: 10.1172/JCI81129. |
[6] | Kotzerke K, Mempel M, Aung T, et al. Immunostimulatory activity of murine keratinocyte⁃derived exosomes[J]. Exp Dermatol, 2013,22(10):650⁃655. doi: 10.1111/exd.12230. |
[7] | Cai XW, Zhu R, Ran L, et al. A novel non⁃contact communication between human keratinocytes and T cells: exosomes derived from keratinocytes support superantigen⁃induced proliferation of resting T cells[J]. Mol Med Rep, 2017,16(5):7032⁃7038. doi: 10.3892/mmr.2017.7492. |
[8] | Medina A, Ghahary A. Transdifferentiated circulating monocytes release exosomes containing 14⁃3⁃3 proteins with matrix metalloproteinase⁃1 stimulating effect for dermal fibroblasts[J]. Wound Repair Regen, 2010,18(2):245⁃253. doi: 10.1111/j.1524⁃ 475X.2010.00580.x. |
[9] | Shefler I, Pasmanik⁃Chor M, Kidron D, et al. T cell⁃derived microvesicles induce mast cell production of IL⁃24: relevance to inflammatory skin diseases[J]. J Allergy Clin Immunol, 2014,133(1):217⁃224.e1⁃3. doi: 10.1016/j.jaci.2013.04.035. |
[10] | López P, Rodríguez⁃Carrio J, Martínez⁃Zapico A, et al. Circulating microparticle subpopulations in systemic lupus erythematosus are affected by disease activity[J]. Int J Cardiol, 2017,236:138⁃144. doi: 10.1016/j.ijcard.2017.02.107. |
[11] | Ulivieri C, Baldari CT. Regulation of T cell activation and differentiation by extracellular vesicles and their pathogenic role in systemic lupus erythematosus and multiple sclerosis[J]. Molecules, 2017,22(2). pii:E225. doi: 10.3390/molecules2202 0225. |
[12] | Nielsen CT, Østergaard O, Rekvig OP, et al. Galectin⁃3 binding protein links circulating microparticles with electron dense glomerular deposits in lupus nephritis[J]. Lupus, 2015,24(11):1150⁃1160. doi: 10.1177/0961203315580146. |
[13] | 张淑娟, 唐亚萍, 梁景耀, 等. 姜黄素逆转系统性红斑狼疮患者外泌体诱导的巨噬细胞吞噬功能受损[J]. 中华皮肤科杂志, 2019,52(6):378⁃382. doi: 10.3760/cma.j.issn.0412⁃4030. 2019.06.002. |
[14] | Fang H, Shao S, Jiang M, et al. Proinflammatory role of blister fluid⁃derived exosomes in bullous pemphigoid[J]. J Pathol, 2018,245(1):114⁃125. doi: 10.1002/path.5061. |
[15] | Cheung KL, Jarrett R, Subramaniam S, et al. Psoriatic T cells recognize neolipid antigens generated by mast cell phospholipase delivered by exosomes and presented by CD1a[J]. J Exp Med, 2016,213(11):2399⁃2412. doi: 10.1084/jem. 20160258. |
[16] | Pelletier F, Garnache⁃Ottou F, Biichlé S, et al. Effects of anti⁃TNF⁃α agents on circulating endothelial⁃derived and platelet⁃derived microparticles in psoriasis[J]. Exp Dermatol, 2014,23(12):924⁃925. doi: 10.1111/exd.12551. |
[17] | Schorey JS, Harding CV. Extracellular vesicles and infectious diseases: new complexity to an old story[J]. J Clin Invest, 2016,126(4):1181⁃1189. doi: 10.1172/JCI81132. |
[18] | Gehrmann U, Qazi KR, Johansson C, et al. Nanovesicles from Malassezia sympodialis and host exosomes induce cytokine responses⁃⁃novel mechanisms for host⁃microbe interactions in atopic eczema[J/OL]. PLoS One, 2011,6(7):e21480. doi: 10.1371/journal.pone.0021480. |
[19] | Jun SH, Lee JH, Kim SI, et al. Staphylococcus aureus⁃derived membrane vesicles exacerbate skin inflammation in atopic dermatitis[J]. Clin Exp Allergy, 2017,47(1):85⁃96. doi: 10. 1111/cea.12851. |
[20] | Kim YS, Choi EJ, Lee WH, et al. Extracellular vesicles, especially derived from Gram⁃negative bacteria, in indoor dust induce neutrophilic pulmonary inflammation associated with both Th1 and Th17 cell responses[J]. Clin Exp Allergy, 2013,43(4):443⁃454. doi: 10.1111/cea.12085. |
[21] | Choi EJ, Lee HG, Bae IH, et al. Propionibacterium acnes⁃derived extracellular vesicles promote acne⁃like phenotypes in human epidermis[J]. J Invest Dermatol, 2018,138(6):1371⁃1379. doi: 10.1016/j.jid.2018.01.007. |
[22] | 许卜方, 王千秋, 张瑞丽, 等. 梅毒螺旋体诱导巨噬细胞分泌的外泌体特征及其对人脐静脉内皮细胞增殖的影响[J]. 中华皮肤科杂志, 2018,51(5):341⁃346. doi: 10.3760/cma.j.issn. 0412⁃4030.2018.05.005. |
[23] | Mercier SK, Donaghy H, Botting RA, et al. The microvesicle component of HIV⁃1 inocula modulates dendritic cell infection and maturation and enhances adhesion to and activation of T lymphocytes[J/OL]. PLoS Pathog, 2013,9(10):e1003700. doi: 10. 1371/journal.ppat.1003700. |
[24] | Ñahui Palomino RA, Vanpouille C, Laghi L, et al. Extracellular vesicles from symbiotic vaginal lactobacilli inhibit HIV⁃1 infection of human tissues[J]. Nat Commun, 2019,10(1):5656. doi: 10.1038/s41467⁃019⁃13468⁃9. |
[25] | Lo Cicero A, Delevoye C, Gilles⁃Marsens F, et al. Exosomes released by keratinocytes modulate melanocyte pigmentation[J]. Nat Commun, 2015,6:7506. doi: 10.1038/ncomms8506. |
[26] | Kim NH, Choi SH, Kim CH, et al. Reduced miR⁃675 in exosome in H19 RNA⁃related melanogenesis via MITF as a direct target[J]. J Invest Dermatol, 2014,134(4):1075⁃1082. doi: 10.1038/jid.2013.478. |
[27] | Wäster P, Eriksson I, Vainikka L, et al. Extracellular vesicles are transferred from melanocytes to keratinocytes after UVA irradiation[J]. Sci Rep, 2016,6:27890. doi: 10.1038/srep27890. |
[28] | Bin BH, Kim DK, Kim NH, et al. Fibronectin⁃containing extracellular vesicles protect melanocytes against ultraviolet radiation⁃induced cytotoxicity[J]. J Invest Dermatol, 2016,136(5):957⁃966. doi: 10.1016/j.jid.2015.08.001. |
[29] | Peinado H, Alečković M, Lavotshkin S, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro⁃metastatic phenotype through MET[J]. Nat Med, 2012,18(6):883⁃891. doi: 10.1038/nm.2753. |
[30] | Romano G, Kwong LN. MiRNAs, melanoma and microenvironment: an intricate network[J]. Int J Mol Sci, 2017,18(11). pii: E2354. doi: 10.3390/ijms18112354. |
[31] | Tucci M, Passarelli A, Mannavola F, et al. Serum exosomes as predictors of clinical response to ipilimumab in metastatic melanoma[J]. Oncoimmunology, 2018,7(2):e1387706. doi: 10.1080/2162402X.2017.1387706. |
[32] | 王江文,易阳艳,朱元正,等. 脂肪干细胞来源外泌体促进糖尿病小鼠创面愈合的实验研究[J]. 中国修复重建外科杂志, 2020,34(1):124⁃131. doi: 10.7507/1002⁃1892.201903058. |
[33] | 陈涛, 高绍莹, 郝艺, 等. 人羊膜间充质干细胞外泌体通过miR⁃135a促进成纤维细胞迁移实验研究[J]. 中国修复重建外科杂志, 2020,34(2):234⁃239. doi: 10.7507/1002⁃1892.20 1907136. |
[34] | 李全, 崔凤瑞, 巴特, 等. 脂肪干细胞来源的外泌体促进肉芽组织来源的成纤维细胞增殖的初步研究[J]. 中华损伤与修复杂志(电子版), 2019,14(2):91⁃96. doi: 10.3877/cma.j.issn. 1673⁃9450.2019.02.003. |
[35] | 张远远, 曾悦, 朱艳霞, 等. 人脂肪干细胞源外泌体对HaCaT细胞损伤修复及迁移功能影响的初步实验研究[J]. 中华皮肤科杂志, 2019,52(9):616⁃623. doi: 10.3760/cma.j.issn.0412⁃4030.2019.09.006. |
[36] | 田新立, 江波, 颜洪. 脂肪间充质干细胞来源外泌体对角质形成细胞增殖和迁移的影响与机制[J]. 中国组织工程研究, 2019,23(1):68⁃73. doi: 10.3969/j.issn.2095⁃4344.1527. |
[37] | Beer L, Zimmermann M, Mitterbauer A, et al. Analysis of the secretome of apoptotic peripheral blood mononuclear cells: impact of released proteins and exosomes for tissue regeneration[J]. Sci Rep, 2015,5:16662. doi: 10.1038/srep16662. |
[38] | McBride JD, Rodriguez⁃Menocal L, Badiavas EV. Extracellular vesicles as biomarkers and therapeutics in dermatology: a focus on exosomes[J]. J Invest Dermatol, 2017,137(8):1622⁃1629. doi: 10.1016/j.jid.2017.04.021. |
[39] | Ferreira A, Cunha P, Carregal VM, et al. Extracellular vesicles from adipose⁃derived mesenchymal stem/stromal cells accelerate migration and activate AKT pathway in human keratinocytes and fibroblasts independently of miR⁃205 activity[J]. Stem Cells Int, 2017,2017:9841035. doi: 10.1155/2017/9841035. |
[40] | Than U, Guanzon D, Leavesley D, et al. Association of extracellular membrane vesicles with cutaneous wound healing[J]. Int J Mol Sci, 2017,18(5). pii: E956. doi: 10.3390/ijms1805 0956. |
[41] | Li Q, Zhao H, Chen W, et al. Human keratinocyte⁃derived microvesicle miRNA⁃21 promotes skin wound healing in diabetic rats through facilitating fibroblast function and angiogenesis[J]. Int J Biochem Cell Biol, 2019,114:105570. doi: 10.1016/j.biocel.2019.105570. |
[42] | Del Re M, Marconcini R, Pasquini G, et al. PD⁃L1 mRNA expression in plasma⁃derived exosomes is associated with response to anti⁃PD⁃1 antibodies in melanoma and NSCLC[J]. Br J Cancer, 2018,118(6):820⁃824. doi: 10.1038/bjc.2018.9. |
[43] | Cordonnier M, Nardin C, Chanteloup G, et al. Tracking the evolution of circulating exosomal⁃PD⁃L1 to monitor melanoma patients[J]. J Extracell Vesicles, 2020,9(1):1710899. doi: 10. 1080/20013078.2019.1710899. |
[44] | Svedman FC, Lohcharoenkal W, Bottai M, et al. Extracellular microvesicle microRNAs as predictive biomarkers for targeted therapy in metastastic cutaneous malignant melanoma[J/OL]. PLoS One, 2018,13(11):e0206942. doi: 10.1371/journal.pone. 0206942. |
[45] | Theodoraki MN, Yerneni SS, Hoffmann TK, et al. Clinical significance of PD⁃L1+ exosomes in plasma of head and neck cancer patients[J]. Clin Cancer Res, 2018,24(4):896⁃905. doi: 10.1158/1078⁃0432.CCR⁃17⁃2664. |
[46] | Dong C, Zhou Q, Fu T, et al. Circulating exosomes derived⁃miR⁃146a from systemic lupus erythematosus patients regulates senescence of mesenchymal stem cells[J]. Biomed Res Int, 2019,2019:6071308. doi: 10.1155/2019/6071308. |
[47] | Lu J, Hu ZB, Chen PP, et al. Urinary podocyte microparticles are associated with disease activity and renal injury in systemic lupus erythematosus[J]. BMC Nephrol, 2019,20(1):303. doi: 10.1186/s12882⁃019⁃1482⁃z. |
[48] | Tangtanatakul P, Klinchanhom S, Sodsai P, et al. Down⁃regulation of let⁃7a and miR⁃21 in urine exosomes from lupus nephritis patients during disease flare[J]. Asian Pac J Allergy Immunol, 2019,37(4):189⁃197. doi: 10.12932/AP⁃130318⁃0280. |
[49] | Perez⁃Hernandez J, Redon J, Cortes R. Extracellular vesicles as therapeutic agents in systemic lupus erythematosus[J]. Int J Mol Sci, 2017,18(4). pii: E717. doi: 10.3390/ijms18040717. |
[50] | Chen C, Wang D, Moshaverinia A, et al. Mesenchymal stem cell transplantation in tight⁃skin mice identifies miR⁃151⁃5p as a therapeutic target for systemic sclerosis[J]. Cell Res, 2017,27(4):559⁃577. doi: 10.1038/cr.2017.11. |
[51] | Du YM, Zhuansun YX, Chen R, et al. Mesenchymal stem cell exosomes promote immunosuppression of regulatory T cells in asthma[J]. Exp Cell Res, 2018,363(1):114⁃120. doi: 10.1016/j.yexcr.2017.12.021. |
[52] | Pitt JM, André F, Amigorena S, et al. Dendritic cell⁃derived exosomes for cancer therapy[J]. J Clin Invest, 2016,126(4):1224⁃1232. doi: 10.1172/JCI81137. |
[53] | Zhu L, Kalimuthu S, Gangadaran P, et al. Exosomes derived from natural killer cells exert therapeutic effect in melanoma[J]. Theranostics, 2017,7(10):2732⁃2745. doi: 10.7150/thno. 18752. |
[1] | Hong Yongzhen, Wang Qian, Liang Junqin, . Application of next-generation sequencing in the field of non-hereditary dermatoses [J]. Chinese Journal of Dermatology, 2024, 0(3): 20220436-e20220436. |
[2] | Wang Chen, Xue Chenhong, Song Jinghui, Li Jianguo, Li Zhenlu, Zhang Shoumin, Li Ming, Wang Jianbo. Adalimumab for the treatment of three cases of Blau syndrome in a pedigree [J]. Chinese Journal of Dermatology, 2024, 0(2): 20220239-e20220239. |
[3] | Guo Lei, Cao Chunyan, Fang Xiaoya, Feng Suying. Analysis of current status and risk factors of multidrug-resistant bacteria wound infections in patients with autoimmune bullous diseases [J]. Chinese Journal of Dermatology, 2024, 57(2): 155-160. |
[4] | Jing Ke, Wang Yuan, Li Suo, Feng Suying. Autoimmune subepidermal bullous diseases characterized by annular erythema and blisters: a retrospective analysis of 25 cases [J]. Chinese Journal of Dermatology, 2023, 56(9): 832-838. |
[5] | Chen Yaolong, Liu Hui, Yao Zhirong, Gao Xinghua. Strategies and suggestions for improving the quality of guidelines and consensus in the field of dermatology [J]. Chinese Journal of Dermatology, 2023, 56(9): 805-808. |
[6] | Sun Xiaojie, Liu Yi. Anti-androgen drugs in the treatment of skin diseases [J]. Chinese Journal of Dermatology, 2023, 56(9): 882-885. |
[7] | Yang Xiaoli, Deng Danqi. Periodontitis and immune skin diseases [J]. Chinese Journal of Dermatology, 2023, 0(2): 20230059-e20230059. |
[8] | Liu Lihao, Hu Yu, Chen Kun. Clinical application and development of photobiomodulation in dermatology [J]. Chinese Journal of Dermatology, 2023, 0(2): 20230312-e20230312. |
[9] | Zhang Jiaqi, Wu Fan, Han Yuqing, Liu Qi, Pan Yao. Application of multi-photon microscopy in dermatology [J]. Chinese Journal of Dermatology, 2023, 0(2): 20230022-e20230022. |
[10] | Jiang Jiayi, Wang Daguang. Prevention and management of thrombus during the perioperative period after dermatologic surgery [J]. Chinese Journal of Dermatology, 2023, 0(2): 20220147-e0220147. |
[11] | Hao Feng, Liu Guoyan. Application of optical coherence tomography in dermatology [J]. Chinese Journal of Dermatology, 2023, 0(2): 20220353-e20220353. |
[12] | Deng Wei, Zhang Gaolei, Chen Jianyou, Zhang Sheng, Jiang Lixiao, Liu Xiaoyan, Su Wei. Skin manifestations of 61 children with coronavirus disease 19 [J]. Chinese Journal of Dermatology, 2023, 56(12): 1154-1157. |
[13] | Zhu Xinyu, Pan Xiaoyuan, Yang Haijing, Wang Fei, Dong Zhengbang. Clinical features of coronavirus disease 2019 in patients with autoimmune blistering diseases [J]. Chinese Journal of Dermatology, 2023, 56(11): 1023-1027. |
[14] | You Ruixuan, Zeng Zhuotong, Qiu Xiangning, Xiao Rong. Biological agents targeting interleukin-23/Th17 axis in inflammatory skin diseases: from basic research to clinical application [J]. Chinese Journal of Dermatology, 2023, 56(11): 1065-1069. |
[15] | Wei Jin, Zang Dongjie, Zeng Sanwu, Jiang Jing, Lun Wenhui. Mutation analysis of the KRT5 gene in a Chinese pedigree with Dowling-Degos disease [J]. Chinese Journal of Dermatology, 2022, 55(8): 703-705. |
|