中华皮肤科杂志 ›› 2020, Vol. 53 ›› Issue (7): 508-513.doi: 10.35541/cjd.20191016

• 论著 • 上一篇    下一篇

婴儿血管瘤长链非编码RNA与mRNA表达谱分析

杨开颖1,代诗懿1,邱桐1,周江元1,陈思源2,吉毅1   

  1. 1. 四川大学华西医院小儿外科,成都 610041
    2. 四川大学华西医院重症医学科,成都 610041
  • 收稿日期:2019-10-21 修回日期:2020-05-11 发布日期:2020-07-06
  • 通讯作者: 吉毅 E-mail:jijiyuanyuan@163.com
  • 基金资助:
    国家自然科学基金;国家自然科学基金;四川省科技计划重点研发项目;四川大学华西医院学科卓越发展1·3·5工程临床研究孵化项目;四川大学优秀青年学者基金

Expression profiling of long noncoding RNAs and mRNAs in infantile hemangioma

Yang Kaiying 1,Dai Shiyi 1,Qiu Tong 1,Zhou Jiangyuan 1,Chen Siyuan 2,Ji Yi 1   

  1. 1. Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;
    2. Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
  • Received:2019-10-21 Revised:2020-05-11 Published:2020-07-06
  • Contact: Ji Yi E-mail:jijiyuanyuan@163.com
  • Supported by:
    National Natural Science Foundation of China;National Natural Science Foundation of China;Key Project in the Science & Technology Program of Sichuan Province;The 1·3·5 Project for Disciplines of Excellence-Clinical Research Incubation Project of West China Hospital of Sichuan University;Science Foundation for Excellent Youth Scholars of Sichuan University

摘要: 【摘要】 目的 研究增殖期与消退期婴儿血管瘤(IH)长链非编码RNA(lncRNA)与mRNA的差异表达情况。方法 2019年1 - 3月在四川大学华西医院小儿外科收集行手术切除治疗的8例IH组织(增殖期与消退期各4例),运用基因芯片技术筛选差异表达(P < 0.05,差异倍数 ≥ 1.5)lncRNA和mRNA,并用实时荧光定量PCR(qRT-PCR)技术对芯片结果进行验证。同时,应用生物信息学方法,对差异基因进行GO功能和KEGG通路分析,并构建lncRNA-mRNA共表达网络,预测差异lncRNA的顺式作用靶基因。结果 通过基因芯片技术共筛选出405条差异lncRNA(108条下调,297条上调)与772条差异mRNA(107条下调,665条上调)。qRT-PCR验证4条lncRNA(n335248、ENST00000450864、n333319和n335185)与4条mRNA(EDNRA、IFI6、HK2与ITGA1)的表达,结果与基因芯片检测结果一致。GO与KEGG富集分析发现,差异mRNA主要参与血管凝固、轴突导向、血管生成和细胞黏附等生物过程,差异mRNA主要富集在代谢通路、细胞局部黏附、肌动蛋白细胞骨架调控、白细胞跨内皮迁移、磷脂酰肌醇-3-激酶/丝苏氨酸蛋白激酶等信号通路。lncRNA-mRNA共表达网络由度值 ≥ 15的23条mRNA和58条lncRNA共同构建组成。结论 增殖期与消退期IH组织中存在大量差异表达的lncRNA和mRNA,这些lncRNA可能通过调控相应的靶mRNA参与IH发生发展。

关键词: 血管瘤, 婴儿, 非翻译区, RNA, 信使, 计算生物学, 寡核苷酸序列分析, 长链非编码RNA

Abstract: 【Abstract】 Objective To investigate differentially expressed long noncoding RNAs (lncRNAs) and mRNAs between proliferating and involuting infantile hemangioma (IH). Methods Eight IH specimens were surgically resected from 4 children with proliferating IH and 4 with involuting IH in Department of Pediatric Surgery, West China Hospital, Sichuan University from January to March in 2019. Differentially expressed lncRNAs and mRNAs between proliferating and involuting IH (a P value < 0.05 and a fold change ≥ 2.0) were screened by microarray analysis, and verified by real-time fluorescence-based quantitative PCR (qRT-PCR). Bioinformatics analysis was further performed, including GO and KEGG pathway analyses of differentially expressed mRNAs, construction of a lncRNA-mRNA co-expression network, and prediction of cis-acting target genes of differentially expressed lncRNAs. Results A total of 405 differentially expressed lncRNAs and 772 differentially expressed mRNAs were identified between the proliferating and involuting IH specimens by using microarray technology. Of them, 108 lncRNAs and 107 mRNAs were downregulated, 297 lncRNAs and 665 mRNAs were upregulated in the proliferating IH specimens. Four lncRNAs (n335248, ENST00000450864, n333319, and n335185) and 4 mRNAs (EDNRA, IFI6, HK2, and ITGA1) were verified by qRT-PCR, and the results were consistent with those of microarray analysis. GO and KEGG enrichment analyses showed that differentially expressed mRNAs were mainly involved in the biological processes blood coagulation, axon guidance, angiogenesis and cell adhesion. Besides, differentially expressed mRNAs were mostly enriched in the metabolic pathways focal cell adhesion, regulation of actin cytoskeleton, leukocyte transendothelial migration and phosphatidylinositol 3-kinase/serine-threonine protein kinase and other signaling pathways. In addition, a lncRNA-mRNA co-expression network was constructed with 23 mRNAs and 58 lncRNAs with the degree ≥ 15. Conclusion Lots of differentially expressed lncRNAs and mRNAs were identified between proliferating and involuting IH tissues, and these lncRNAs may play important roles in the development of IH by regulating corresponding target mRNAs.

Key words: Hemangioma, Infant, Untranslated regions, RNA, messenger, Computational biology, Oligonucleotide array sequence analysis, Long noncoding RNA

引用本文

杨开颖 代诗懿 邱桐 周江元 陈思源 吉毅. 婴儿血管瘤长链非编码RNA与mRNA表达谱分析[J]. 中华皮肤科杂志, 2020,53(7):508-513. doi:10.35541/cjd.20191016

Yang Kaiying Dai Shiyi Qiu Tong Zhou Jiangyuan Chen Siyuan Ji Yi. Expression profiling of long noncoding RNAs and mRNAs in infantile hemangioma[J]. Chinese Journal of Dermatology, 2020, 53(7): 508-513.doi:10.35541/cjd.20191016