[1] |
Crow MK. Long interspersed nuclear elements (LINE⁃1): potential triggers of systemic autoimmune disease[J]. Autoimmunity, 2010,43(1):7⁃16. doi: 10.3109/08916930903374865.
|
[2] |
Jiang Y, Zong W, Ju S, et al. Promising member of the short interspersed nuclear elements (Alu elements): mechanisms and clinical applications in human cancers[J]. J Med Genet, 2019,56(10):639⁃645. doi: 10.1136/jmedgenet⁃2018⁃105761.
|
[3] |
Song Y, Li X, Wei X, et al. Human endogenous retroviruses as biomedicine markers[J]. Virol Sin, 2021,36(5):852⁃858. doi: 10.1007/s12250⁃021⁃00387⁃7.
|
[4] |
Cervantes⁃Ayalc A, Ruiz Esparza⁃Garrido R, Velázquez⁃Flores MÁ. Long interspersed nuclear elements 1 (LINE1): the chimeric transcript L1⁃MET and its involvement in cancer[J]. Cancer Genet, 2020,241:1⁃11. doi: 10.1016/j.cancergen.2019. 11.004.
|
[5] |
Sciamanna I, De Luca C, Spadafora C. The reverse transcriptase encoded by LINE⁃1 retrotransposons in the genesis, progression, and therapy of cancer[J]. Front Chem, 2016,4:6. doi: 10.3389/fchem.2016.00006.
|
[6] |
Baldwin ET, van Eeuwen T, Hoyos D, et al. Structures, functions and adaptations of the human LINE⁃1 ORF2 protein. Nature[J]. 2024,626(7997):194⁃206. doi: 10.1038/s41586⁃023⁃06947⁃z.
|
[7] |
Tanaka S, Ise W, Baba Y, et al. Silencing and activating anergic B cells[J]. Immunol Rev, 2022,307(1):43⁃52. doi: 10.1111/imr. 13053.
|
[8] |
Dörner T, Szelinski F, Lino AC, et al. Therapeutic implications of the anergic/postactivated status of B cells in systemic lupus erythematosus[J/OL]. RMD Open, 2020,6(2):e001258. doi: 10.1136/ rmdopen⁃2020⁃001258.
|
[9] |
Liu Y, Zhang Z, Kang Z, et al. Interleukin 4⁃driven reversal of self⁃reactive B cell anergy contributes to the pathogenesis of systemic lupus erythematosus[J]. Ann Rheum Dis, 2023,82(11):1444⁃1454. doi: 10.1136/ard⁃2023⁃224453.
|
[10] |
Zecchini V, Paupe V, Herranz⁃Montoya I, et al. Fumarate induces vesicular release of mtDNA to drive innate immunity[J]. Nature, 2023,615(7952):499⁃506. doi: 10.1038/s41586⁃023⁃05770⁃w.
|
[11] |
Kancherla P, Daneshvar M, Sager RA, et al. Fumarate hydratase as a therapeutic target in renal cancer[J]. Expert Opin Ther Targets, 2020,24(9):923⁃936. doi: 10.1080/14728222.2020.180 4862.
|
[12] |
Cheng J, Liu Y, Yan J, et al. Fumarate suppresses B⁃cell activation and function through direct inactivation of LYN[J]. Nat Chem Biol, 2022,18(9):954⁃962. doi: 10.1038/s41589⁃022⁃01052⁃0.
|
[13] |
Zhao Y, Li Y, Zhao D, et al. Fumarate hydratase⁃specific T cell response in Chinese patients with autoimmune hepatitis[J]. Clin Res Hepatol Gastroenterol, 2018,42(4):339⁃346. doi: 10.1016/j.clinre.2017.12.003.
|
[14] |
Hooftman A, Peace CG, Ryan DG, et al. Macrophage fumarate hydratase restrains mtRNA⁃mediated interferon production[J]. Nature, 2023,615(7952):490⁃498. doi: 10.1038/s41586⁃023⁃05720⁃6.
|
[15] |
Hou Y, Wang L, Luo C, et al. Clinical characteristics of early⁃onset paediatric systemic lupus erythematosus in a single centre in China[J]. Rheumatology (Oxford), 2023,62(10):3373⁃3381. doi: 10.1093/rheumatology/kead086.
|
[16] |
Crisafulli F, Andreoli L, Zucchi D, et al. Variations of C3 and C4 before and during pregnancy in systemic lupus erythematosus: association with disease flares and obstetric outcomes[J]. J Rheumatol, 2023,50(10):1296⁃1301. doi: 10.3899/jrheum.2022⁃1135.
|
[17] |
Fanouriakis A, Kostopoulou M, Andersen J, et al. EULAR recommendations for the management of systemic lupus erythematosus: 2023 update[J]. Ann Rheum Dis, 2024,83(1):15⁃29. doi: 10.1136/ard⁃2023⁃224762.
|
[18] |
Wohlrab J, Kreft D. Niacinamide ⁃ mechanisms of action and its topical use in dermatology[J]. Skin Pharmacol Physiol, 2014,27(6):311⁃315. doi: 10.1159/000359974.
|
[19] |
Nouh AH, Elshahid AR, Kadah AS, et al. Topical niacinamide (nicotinamide) treatment for discoid lupus erythematosus (DLE): a prospective pilot study[J]. J Cosmet Dermatol, 2023,22(5):1647⁃1657. doi: 10.1111/jocd.15628.
|
[20] |
Sterner RC, Sterner RM. CAR⁃T cell therapy: current limitations and potential strategies[J]. Blood Cancer J, 2021,11(4):69. doi: 10.1038/s41408⁃021⁃00459⁃7.
|
[21] |
Ying Z, Yang H, Guo Y, et al. Relmacabtagene autoleucel (relma⁃cel) CD19 CAR⁃T therapy for adults with heavily pretreated relapsed/refractory large B⁃cell lymphoma in China[J]. Cancer Med, 2021,10(3):999⁃1011. doi: 10.1002/cam4.3686.
|
[22] |
Ying Z, Yang H, Guo Y, et al. Long⁃term outcomes of relmacabtagene autoleucel in Chinese patients with relapsed/refractory large B⁃cell lymphoma: updated results of the RELIANCE study[J]. Cytotherapy, 2023,25(5):521⁃529. doi: 10.1016/j.jcyt.2022.10.011.
|
[23] |
Lin Z, Zuo C, Jiang Y, et al. Cost⁃effectiveness analysis of relmacabtagene autoleucel for relapsed or refractory large B⁃cell lymphoma in China[J]. Value Health Reg Issues, 2023,37:41⁃48. doi: 10.1016/j.vhri.2023.03.006.
|
[24] |
Hurst C, Soto M, Vina ER, et al. Renin⁃angiotensin system⁃modifying antihypertensive drugs can reduce the risk of cardiovascular complications in lupus: a retrospective cohort study[J]. Am J Med, 2023,136(3):284⁃293.e4. doi: 10.1016/j.amjmed.2022.11.016.
|
[25] |
Roccatello D, Fenoglio R, Caniggia I, et al. Daratumumab monotherapy for refractory lupus nephritis[J]. Nat Med, 2023,29(8):2041⁃2047. doi: 10.1038/s41591⁃023⁃02479⁃1.
|