[1] |
Tian J, Zhang D, Yao X, et al. Global epidemiology of systemic lupus erythematosus: a comprehensive systematic analysis and modelling study[J]. Ann Rheum Dis, 2023,82(3):351⁃356. doi: 10.1136/ard⁃2022⁃223035.
|
[2] |
Jenks SA, Cashman KS, Zumaquero E, et al. Distinct effector B cells induced by unregulated Toll⁃like receptor 7 contribute to pathogenic responses in systemic lupus erythematosus[J]. Immunity, 2018,49(4):725⁃739.e6. doi: 10.1016/j.immuni.2018. 08.015.
|
[3] |
Brown GJ, Cañete PF, Wang H, et al. TLR7 gain⁃of⁃function genetic variation causes human lupus[J]. Nature, 2022,605(7909):349⁃356. doi: 10.1038/s41586⁃022⁃04642⁃z.
|
[4] |
Wu HJ, Ivanov II, Darce J, et al. Gut⁃residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells[J]. Immunity, 2010,32(6):815⁃827. doi: 10.1016/j.immuni. 2010.06.001.
|
[5] |
Ivanov II, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria[J]. Cell, 2009,139(3):485⁃498. doi: 10.1016/j.cell.2009.09.033.
|
[6] |
Flannigan KL, Denning TL. Segmented filamentous bacteria⁃induced immune responses: a balancing act between host protection and autoimmunity[J]. Immunology, 2018,154(4):537⁃546. doi: 10.1111/imm.12950.
|
[7] |
Valiente GR, Munir A, Hart ML, et al. Gut dysbiosis is associated with acceleration of lupus nephritis[J]. Sci Rep, 2022,12(1):152. doi: 10.1038/s41598⁃021⁃03886⁃5.
|
[8] |
van Drongelen V, Scavuzzi BM, Nogueira SV, et al. HLA⁃DRB1 allelic epitopes that associate with autoimmune disease risk or protection activate reciprocal macrophage polarization[J]. Sci Rep, 2021,11(1):2599. doi: 10.1038/s41598⁃021⁃82195⁃3.
|
[9] |
Wang YF, Zhang Y, Lin Z, et al. Identification of 38 novel loci for systemic lupus erythematosus and genetic heterogeneity between ancestral groups[J]. Nat Commun, 2021,12(1):772. doi: 10.1038/s41467⁃021⁃21049⁃y.
|
[10] |
Miglioranza Scavuzzi B, van Drongelen V, Kaur B, et al. The lupus susceptibility allele DRB1*03:01 encodes a disease⁃driving epitope[J]. Commun Biol, 2022,5(1):751. doi: 10.1038/s42003⁃022⁃03717⁃x.
|
[11] |
Pilsczek FH, Salina D, Poon KK, et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus[J]. J Immunol, 2010,185(12):7413⁃7425. doi: 10.4049/jimmunol.1000675.
|
[12] |
Denny MF, Yalavarthi S, Zhao W, et al. A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs[J]. J Immunol, 2010,184(6):3284⁃3297. doi: 10. 4049/jimmunol.0902199.
|
[13] |
Monteith AJ, Miller JM, Williams JM, et al. Altered mitochondrial homeostasis during systemic lupus erythematosus impairs neutrophil extracellular trap formation rendering neutrophils ineffective at combating Staphylococcus aureus[J]. J Immunol, 2022,208(2):454⁃463. doi: 10.4049/jimmunol.210 0752.
|
[14] |
Biazar C, Sigges J, Patsinakidis N, et al. Cutaneous lupus erythematosus: first multicenter database analysis of 1002 patients from the European Society of Cutaneous Lupus Erythematosus (EUSCLE)[J]. Autoimmun Rev, 2013,12(3):444⁃454. doi: 10.1016/j.autrev.2012.08.019.
|
[15] |
Fernandes⁃Alnemri T, Yu JW, Datta P, et al. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA[J]. Nature, 2009,458(7237):509⁃513. doi: 10.1038/nature07710.
|
[16] |
Zhao Z, Zhu H, Li Q, et al. Skin CD4+ Trm cells distinguish acute cutaneous lupus erythematosus from localized discoid lupus erythematosus/subacute cutaneous lupus erythematosus and other skin diseases[J]. J Autoimmun, 2022,128:102811. doi: 10.1016/j.jaut.2022.102811.
|
[17] |
Kang HM, Subramaniam M, Targ S, et al. Multiplexed droplet single⁃cell RNA⁃sequencing using natural genetic variation[J]. Nat Biotechnol, 2018,36(1):89⁃94. doi: 10.1038/nbt.4042.
|
[18] |
Perez RK, Gordon MG, Subramaniam M, et al. Single⁃cell RNA⁃seq reveals cell type⁃specific molecular and genetic associations to lupus[J]. Science, 2022,376(6589):eabf1970. doi: 10.1126/science.abf1970.
|
[19] |
Heba AC, Toupance S, Arnone D, et al. Telomeres: new players in immune⁃mediated inflammatory diseases?[J]. J Autoimmun, 2021,123:102699. doi: 10.1016/j.jaut.2021.102699.
|
[20] |
Haque S, Rakieh C, Marriage F, et al. Shortened telomere length in patients with systemic lupus erythematosus[J]. Arthritis Rheum, 2013,65(5):1319⁃1323. doi: 10.1002/art.37895.
|
[21] |
Wang XF, Xu WJ, Wang FF, et al. Telomere length and development of systemic lupus erythematosus: a mendelian randomization study[J]. Arthritis Rheumatol, 2022,74(12):1984⁃1990. doi: 10.1002/art.42304.
|
[22] |
Apte M, McGwin G Jr, Vilá LM, et al. Associated factors and impact of myocarditis in patients with SLE from LUMINA, a multiethnic US cohort (LV). [corrected][J]. Rheumatology (Oxford), 2008,47(3):362⁃367. doi: 10.1093/rheumatology/kem371.
|
[23] |
Yafasova A, Fosbøl EL, Schou M, et al. Long⁃term cardiovascular outcomes in systemic lupus erythematosus[J]. J Am Coll Cardiol, 2021,77(14):1717⁃1727. doi: 10.1016/j.jacc.2021.02.029.
|
[24] |
Myhr KA, Zinglersen AH, Hermansen MF, et al. Left ventricular size and function in patients with systemic lupus erythematosus associate with lupus anticoagulant: an echocardiographic follow⁃up study[J]. J Autoimmun, 2022,132:102884. doi: 10.1016/j.jaut.2022.102884.
|
[25] |
Weber BN, Stevens E, Barrett L, et al. Coronary microvascular dysfunction in systemic lupus erythematosus[J]. J Am Heart Assoc, 2021,10(13):e018555. doi: 10.1161/JAHA.120.018555.
|
[26] |
Furie RA, van Vollenhoven RF, Kalunian K, et al. Trial of anti⁃BDCA2 antibody litifilimab for systemic lupus erythematosus[J]. N Engl J Med, 2022,387(10):894⁃904. doi: 10.1056/NEJ Moa2118025.
|
[27] |
Lé AM, Puig L, Torres T. Deucravacitinib for the treatment of psoriatic disease[J]. Am J Clin Dermatol, 2022,23(6):813⁃822. doi: 10.1007/s40257⁃022⁃00720⁃0.
|
[28] |
Morand E, Pike M, Merrill JT, et al. Deucravacitinib, a tyrosine kinase 2 inhibitor, in systemic lupus erythematosus: a phase II, randomized, double⁃blind, placebo⁃controlled trial[J]. Arthritis Rheumatol, 2023,75(2):242⁃252. doi: 10.1002/art.42391.
|
[29] |
Dunford P, Comer G, Raymond R, et al. PREVAIL 1: a multiple ascending dose study in normal healthy volunteers of PRV⁃3279, a novel bispecific DART molecule targeting CD32B and CD79B on B cells, with potential for treatment of SLE[J]. Arthritis Rheumatol, 2020,72 (suppl 10):1701⁃1703.
|