[1] |
Luke JJ, Flaherty KT, Ribas A, et al. Targeted agents and immunotherapies: optimizing outcomes in melanoma[J]. Nat Rev Clin Oncol, 2017,14(8):463⁃482. doi: 10.1038/nrclinonc.2017. 43.
|
[2] |
Jenkins RW, Fisher DE. Treatment of advanced melanoma in 2020 and beyond[J]. J Invest Dermatol, 2021,141(1):23⁃31. doi: 10.1016/j.jid.2020.03.943.
|
[3] |
Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor⁃infiltrating immune cells and their therapeutic implications[J]. Cell Mol Immunol, 2020,17(8):807⁃821. doi: 10.1038/s41423⁃020⁃0488⁃6.
|
[4] |
Vujanovic L, Butterfield LH. Melanoma cancer vaccines and anti⁃tumor T cell responses[J]. J Cell Biochem, 2007,102(2):301⁃310. doi: 10.1002/jcb.21473.
|
[5] |
Davey RJ, van der Westhuizen A, Bowden NA. Metastatic melanoma treatment: combining old and new therapies[J]. Crit Rev Oncol Hematol, 2016,98:242⁃253. doi: 10.1016/j.critrevonc. 2015.11.011.
|
[6] |
Hamid O, Ismail R, Puzanov I. Intratumoral immunotherapy⁃update 2019[J]. Oncologist, 2020,25(3):e423⁃e438. doi: 10.1634/ theoncologist.2019⁃0438.
|
[7] |
Rohaan MW, van den Berg JH, Kvistborg P, et al. Adoptive transfer of tumor⁃infiltrating lymphocytes in melanoma: a viable treatment option[J]. J Immunother Cancer, 2018,6(1):102. doi: 10.1186/s40425⁃018⁃0391⁃1.
|
[8] |
Seth R, Messersmith H, Kaur V, et al. Systemic therapy for melanoma: ASCO guideline[J]. J Clin Oncol, 2020,38(33):3947⁃3970. doi: 10.1200/JCO.20.00198.
|
[9] |
Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies[J]. Nat Rev Drug Discov, 2019,18(3):197⁃218. doi: 10.1038/s41573⁃018⁃0007⁃y.
|
[10] |
Ayers M, Nebozhyn M, Cristescu R, et al. Molecular profiling of cohorts of tumor samples to guide clinical development of pembrolizumab as monotherapy[J]. Clin Cancer Res, 2019,25(5):1564⁃1573. doi: 10.1158/1078⁃0432.CCR⁃18⁃1316.
|
[11] |
Hegde PS, Karanikas V, Evers S. The where, the when, and the how of immune monitoring for cancer immunotherapies in the era of checkpoint inhibition[J]. Clin Cancer Res, 2016,22(8):1865⁃1874. doi: 10.1158/1078⁃0432.CCR⁃15⁃1507.
|
[12] |
Mariathasan S, Turley SJ, Nickles D, et al. TGFβ attenuates tumour response to PD⁃L1 blockade by contributing to exclusion of T cells[J]. Nature, 2018,554(7693):544⁃548. doi: 10.1038/nature25501.
|
[13] |
Engblom C, Pfirschke C, Pittet MJ. The role of myeloid cells in cancer therapies[J]. Nat Rev Cancer, 2016,16(7):447⁃462. doi: 10.1038/nrc.2016.54.
|
[14] |
Hegde PS, Chen DS. Top 10 challenges in cancer immunotherapy[J]. Immunity, 2020,52(1):17⁃35. doi: 10.1016/j.immuni.2019.12.011.
|
[15] |
Spranger S, Bao R, Gajewski TF. Melanoma⁃intrinsic β⁃catenin signalling prevents anti⁃tumour immunity[J]. Nature, 2015,523(7559):231⁃235. doi: 10.1038/nature14404.
|
[16] |
Guerra L, Bonetti L, Brenner D. Metabolic modulation of immunity: a new concept in cancer immunotherapy[J]. Cell Rep, 2020,32(1):107848. doi: 10.1016/j.celrep.2020.107848.
|
[17] |
Warming "cold" melanoma with TLR9 agonists[J]. Cancer Discov, 2018,8(6):670. doi: 10.1158/2159⁃8290.CD⁃ND2018⁃004.
|
[18] |
O′Sullivan D, Sanin DE, Pearce EJ, et al. Metabolic interventions in the immune response to cancer[J]. Nat Rev Immunol, 2019,19(5):324⁃335. doi: 10.1038/s41577⁃019⁃0140⁃9.
|
[19] |
Russell L, Peng KW, Russell SJ, et al. Oncolytic viruses: priming time for cancer immunotherapy[J]. BioDrugs, 2019,33(5):485⁃501. doi: 10.1007/s40259⁃019⁃00367⁃0.
|
[20] |
Duan Q, Zhang H, Zheng J, et al. Turning cold into hot: firing up the tumor microenvironment[J]. Trends Cancer, 2020,6(7):605⁃618. doi: 10.1016/j.trecan.2020.02.022.
|
[21] |
Axelrod ML, Johnson DB, Balko JM. Emerging biomarkers for cancer immunotherapy in melanoma[J]. Semin Cancer Biol, 2018,52(Pt 2):207⁃215. doi: 10.1016/j.semcancer.2017.09.004.
|
[22] |
Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy[J]. Nat Rev Cancer, 2019,19(3):133⁃150. doi: 10.1038/s41568⁃019⁃0116⁃x.
|
[23] |
Martens A, Wistuba⁃Hamprecht K, Geukes Foppen M, et al. Baseline peripheral blood biomarkers associated with clinical outcome of advanced melanoma patients treated with ipilimumab[J]. Clin Cancer Res, 2016,22(12):2908⁃2918. doi: 10.1158/1078⁃0432.CCR⁃15⁃2412.
|
[24] |
Cristescu R, Mogg R, Ayers M, et al. Pan⁃tumor genomic biomarkers for PD⁃1 checkpoint blockade⁃based immunotherapy[J]. Science, 2018,362(6411):eaar3593. doi: 10.1126/science.aar3593.
|
[25] |
O′Donnell JS, Long GV, Scolyer RA, et al. Resistance to PD1/PDL1 checkpoint inhibition[J]. Cancer Treat Rev, 2017,52:71⁃81. doi: 10.1016/j.ctrv.2016.11.007.
|
[26] |
Gide TN, Wilmott JS, Scolyer RA, et al. Primary and acquired resistance to immune checkpoint inhibitors in metastatic melanoma[J]. Clin Cancer Res, 2018,24(6):1260⁃1270. doi: 10.1158/1078⁃0432.CCR⁃17⁃2267.
|
[27] |
Egen JG, Ouyang W, Wu LC. Human anti⁃tumor immunity: insights from immunotherapy clinical trials[J]. Immunity, 2020,52(1):36⁃54. doi: 10.1016/j.immuni.2019.12.010.
|
[28] |
Fankhauser M, Broggi M, Potin L, et al. Tumor lymphangiogenesis promotes T cell infiltration and potentiates immunotherapy in melanoma[J]. Sci Transl Med, 2017,9(407):eaal4712. doi: 10.1126/scitranslmed.aal4712.
|
[29] |
Kalbasi A, Ribas A. Tumour⁃intrinsic resistance to immune checkpoint blockade[J]. Nat Rev Immunol, 2020,20(1):25⁃39. doi: 10.1038/s41577⁃019⁃0218⁃4.
|
[30] |
Zaretsky JM, Garcia⁃Diaz A, Shin DS, et al. Mutations associated with acquired resistance to PD⁃1 blockade in melanoma[J]. N Engl J Med, 2016,375(9):819⁃829. doi: 10. 1056/NEJMoa1604958.
|
[31] |
Trujillo JA, Luke JJ, Zha Y, et al. Secondary resistance to immunotherapy associated with β⁃catenin pathway activation or PTEN loss in metastatic melanoma[J]. J Immunother Cancer, 2019,7(1):295. doi: 10.1186/s40425⁃019⁃0780⁃0.
|
[32] |
Hodi FS, Lee S, McDermott DF, et al. Ipilimumab plus sargramostim vs ipilimumab alone for treatment of metastatic melanoma: a randomized clinical trial[J]. JAMA, 2014,312(17):1744⁃1753. doi: 10.1001/jama.2014.13943.
|
[33] |
Ribas A, Dummer R, Puzanov I, et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti⁃PD⁃1 immunotherapy[J]. Cell, 2017,170(6):1109⁃1119.e10. doi: 10.1016/j.cell.2017.08.027.
|
[34] |
Li M, Yang Y, Wei J, et al. Enhanced chemo⁃immunotherapy against melanoma by inhibition of cholesterol esterification in CD8+ T cells[J]. Nanomedicine, 2018,14(8):2541⁃2550. doi: 10.1016/j.nano.2018.08.008.
|
[35] |
Wanderley CW, Colón DF, Luiz J, et al. Paclitaxel reduces tumor growth by reprogramming tumor⁃associated macrophages to an M1 profile in a TLR4⁃dependent manner[J]. Cancer Res, 2018,78(20):5891⁃5900. doi: 10.1158/0008⁃5472.CAN⁃17⁃3480.
|
[36] |
Williams NL, Wuthrick EJ, Kim H, et al. Phase 1 study of ipilimumab combined with whole brain radiation therapy or radiosurgery for melanoma patients with brain metastases[J]. Int J Radiat Oncol Biol Phys, 2017,99(1):22⁃30. doi: 10.1016/j.ijrobp.2017.05.028.
|
[37] |
Nass SJ, Rothenberg ML, Pentz R, et al. Accelerating anticancer drug development ⁃ opportunities and trade⁃offs[J]. Nat Rev Clin Oncol, 2018,15(12):777⁃786. doi: 10.1038/s41571⁃018⁃0102⁃3.
|
[38] |
Simon R. Critical review of umbrella, basket, and platform designs for oncology clinical trials[J]. Clin Pharmacol Ther, 2017,102(6):934⁃941. doi: 10.1002/cpt.814.
|
[39] |
Wang DY, Johnson DB, Davis EJ. Toxicities associated with PD⁃1/PD⁃L1 blockade[J]. Cancer J, 2018,24(1):36⁃40. doi: 10. 1097/PPO.0000000000000296.
|
[40] |
Pollack MH, Betof A, Dearden H, et al. Safety of resuming anti⁃PD⁃1 in patients with immune⁃related adverse events (irAEs) during combined anti⁃CTLA⁃4 and anti⁃PD1 in metastatic melanoma[J]. Ann Oncol, 2018,29(1):250⁃255. doi: 10.1093/annonc/mdx642.
|
[41] |
Irvine DJ, Dane EL. Enhancing cancer immunotherapy with nanomedicine[J]. Nat Rev Immunol, 2020,20(5):321⁃334. doi: 10.1038/s41577⁃019⁃0269⁃6.
|
[42] |
Phuengkham H, Ren L, Shin IW, et al. Nanoengineered immune niches for reprogramming the immunosuppressive tumor microenvironment and enhancing cancer immunotherapy[J]. Adv Mater, 2019,31(34):e1803322. doi: 10.1002/adma.201803 322.
|
[43] |
Shi Y, Lammers T. Combining nanomedicine and immunotherapy[J]. Acc Chem Res, 2019, 52(6):1543⁃1554. doi: 10.1021/acs.accounts.9b00148.
|
[44] |
Xie J, Yang C, Liu Q, et al. Encapsulation of hydrophilic and hydrophobic peptides into hollow mesoporous silica nanoparticles for enhancement of antitumor immune response[J/OL]. Small,2017,13(40):1701741. https://onlinelibrary.wiley.com/doi/full/10.1002/smll.201701741. doi: 10.1002/smll.201701741.
|
[45] |
Dong L, Li Y, Li Z, et al. Au nanocage⁃strengthened dissolving microneedles for chemo⁃photothermal combined therapy of superficial skin tumors[J]. ACS Appl Mater Interfaces, 2018,10(11):9247⁃9256. doi: 10.1021/acsami.7b18293.
|