| [1] | Moor J. The Dartmouth college artificial intelligence conference: the next fifty years[J]. Ai Magazine, 2006,27(4):87⁃91. | 
																													
																						| [2] | Esteva A, Kuprel B, Novoa RA, et al. Dermatologist⁃level classification of skin cancer with deep neural networks[J]. Nature, 2017,542(7639):115 ⁃118, doi: 10.1038/nature21056. | 
																													
																						| [3] | He J, Baxter SL, Xu J, et al. The practical implementation of artificial intelligence technologies in medicine[J]. Nat Med, 2019,25(1):30⁃36. doi: 10.1038/s41591⁃018⁃0307⁃0. | 
																													
																						| [4] | 刘念, 陈宏翔. 人工智能在皮肤科领域的应用与发展[J]. 中华皮肤科杂志, 2019,52(1):63⁃66. doi: 10.3760/cma.j.issn.0412⁃4030.2019.01.021. | 
																													
																						| [5] | LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015,521(7553):436⁃444. doi: 10.1038/nature14539. | 
																													
																						| [6] | Kumar A, Kim J, Lyndon D, et al. An ensemble of fine⁃tuned convolutional neural networks for medical image classification[J]. IEEE J Biomed Health Inform, 2017,21(1):31⁃40. doi: 10. 1109/JBHI.2016.2635663. | 
																													
																						| [7] | Han SS, Kim MS, Lim W, et al. Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm[J]. J Invest Dermatol, 2018,138(7):1529⁃1538. doi: 10.1016/j.jid.2018.01.028. | 
																													
																						| [8] | 周航宁, 谢凤英, 姜志国, 等. 基于深度学习的皮肤影像分类[J]. 协和医学杂志, 2018,9(1):15⁃18. doi: 10.3969/j.issn.1674⁃9081.2018.01.004. | 
																													
																						| [9] | Brinker TJ, Hekler A, Enk AH, et al. A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task[J]. Eur J Cancer, 2019,111:148⁃154. doi: 10.1016/j.ejca. 2019.02.005. | 
																													
																						| [10] | Fujisawa Y, Otomo Y, Ogata Y, et al. Deep⁃learning⁃based, computer⁃aided classifier developed with a small dataset of clinical images surpasses board⁃certified dermatologists in skin tumour diagnosis[J]. Br J Dermatol, 2019,180(2):373⁃381. doi: 10.1111/bjd.16924. | 
																													
																						| [11] | Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020,70(1):7⁃30. doi: 10.3322/caac.21590. | 
																													
																						| [12] | Weinstock MA. Epidemiology, etiology, and control of melanoma[J]. Med Health R I, 2001,84(7):234⁃236. | 
																													
																						| [13] | Koh HK. Melanoma screening: focusing the public health journey[J]. Arch Dermatol, 2007,143(1):101⁃103. doi: 10.1001/archderm. 143.1.101. | 
																													
																						| [14] | Yu C, Yang S, Kim W, et al. Acral melanoma detection using a convolutional neural network for dermoscopy images[J/OL]. PLoS One, 2018,13(3):e0193321. doi: 10.1371/journal.pone. 0193321. | 
																													
																						| [15] | Haenssle HA, Fink C, Schneiderbauer R, et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists[J]. Ann Oncol, 2018,29(8):1836⁃1842. doi: 10.1093/annonc/mdy166. | 
																													
																						| [16] | Yang J, Xie F, Fan H, et al. Classification for dermoscopy images using convolutional neural networks based on region average pooling[J]. IEEE Access, 2018,6:65130⁃65138. doi: 10.1109/ACCESS.2018.2877587. | 
																													
																						| [17] | Brinker TJ, Hekler A, Hauschild A, et al. Comparing artificial intelligence algorithms to 157 German dermatologists: the melanoma classification benchmark[J]. Eur J Cancer, 2019,111:30⁃37. doi: 10.1016/j.ejca.2018.12.016. | 
																													
																						| [18] | 王诗琪, 刘洁, 朱晨雨, 等. 皮肤科医师与深度卷积神经网络诊断色素痣和脂溢性角化病皮肤镜图像比较[J]. 中华皮肤科杂志, 2018,51(7):486⁃489. doi: 10.3760/cma.j.issn.0412⁃4030. 2018.07.002. | 
																													
																						| [19] | Zhang X, Wang S, Liu J, et al. Towards improving diagnosis of skin diseases by combining deep neural network and human knowledge[J]. BMC Med Inform Decis Mak, 2018,18(Suppl 2):59. doi: 10.1186/s12911⁃018⁃0631⁃9. | 
																													
																						| [20] | Wang Y, Jiang Z, Peng Y, et al. Image and graphics technologies and applications[C]//Song X, Xie F, Liu J, et al. An image retrieval method based on color and texture features for dermoscopy images. Beijing: Springer, 2018:403⁃410. doi: 10. 1007/978⁃981⁃13⁃1702⁃6_40. | 
																													
																						| [21] | Han SS, Park GH, Lim W, et al. Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: automatic construction of onychomycosis datasets by region⁃based convolutional deep neural network[J/OL]. PLoS One, 2018,13(1):e0191493. doi: 10. 1371/journal.pone.0191493. | 
																													
																						| [22] | Tschandl P, Argenziano G, Razmara M, et al. Diagnostic accuracy of content⁃based dermatoscopic image retrieval with deep classification features[J]. Br J Dermatol, 2019,181(1):155⁃165. doi: 10.1111/bjd.17189. |