Chinese Journal of Dermatology ›› 2024, e20220783.doi: 10.35541/cjd.20220783
• Reviews • Previous Articles Next Articles
Liu Lyuye1, Zhang Junling2
Received:
2022-11-07
Revised:
2024-04-23
Online:
2024-01-29
Published:
2024-08-22
Contact:
Zhang Junling
E-mail:13920301679@126.com
Liu Lyuye, Zhang Junling. Ferroptosis in common skin diseases[J]. Chinese Journal of Dermatology,2024,e20220783. doi:10.35541/cjd.20220783
[1] | Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron⁃dependent form of nonapoptotic cell death[J]. Cell, 2012,149(5):1060⁃1072. doi: 10.1016/j.cell.2012.03.042. |
[2] | 陈丽华, 向阳. 铁死亡在肿瘤免疫治疗的研究进展[J]. 肿瘤预防与治疗, 2022,35(8):765⁃769. doi: 10.3969/j.issn.1674⁃0904.2022.08.014. |
[3] | Chen X, Comish PB, Tang D, et al. Characteristics and biomarkers of ferroptosis[J]. Front Cell Dev Biol, 2021,9:637162. doi: 10.3389/fcell.2021.637162. |
[4] | Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021,22(4):266⁃282. doi: 10.1038/s41580⁃020⁃00324⁃8. |
[5] | Nagasaki T, Schuyler AJ, Zhao J, et al. 15LO1 dictates glutathione redox changes in asthmatic airway epithelium to worsen type 2 inflammation[J]. J Clin Invest, 2022,132(1):e151685. doi: 10.1172/JCI151685. |
[6] | Lei G, Zhuang L, Gan B. Targeting ferroptosis as a vulnerability in cancer[J]. Nat Rev Cancer, 2022,22(7):381⁃396. doi: 10. 1038/s41568⁃022⁃00459⁃0. |
[7] | Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future[J]. Cell Death Dis, 2020,11(2):88. doi: 10.1038/s41419⁃020⁃2298⁃2. |
[8] | Lei G, Zhang Y, Hong T, et al. Ferroptosis as a mechanism to mediate p53 function in tumor radiosensitivity[J]. Oncogene, 2021,40(20):3533⁃3547. doi: 10.1038/s41388⁃021⁃01790⁃w. |
[9] | Chu B, Kon N, Chen D, et al. ALOX12 is required for p53⁃mediated tumour suppression through a distinct ferroptosis pathway[J]. Nat Cell Biol, 2019,21(5):579⁃591. doi: 10.1038/s41556⁃019⁃0305⁃6. |
[10] | Ji H, Wang W, Li X, et al. p53: a double⁃edged sword in tumor ferroptosis[J]. Pharmacol Res, 2022,177:106013. doi: 10.1016/j.phrs.2021.106013. |
[11] | Wang Y, Zhao Y, Ye T, et al. Ferroptosis signaling and regulators in atherosclerosis[J]. Front Cell Dev Biol, 2021,9:809457. doi: 10.3389/fcell.2021.809457. |
[12] | Dodson M, Castro⁃Portuguez R, Zhang DD. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis[J]. Redox Biol, 2019,23:101107. doi: 10.1016/j.redox.2019.101107. |
[13] | Zhao Y, Lu J, Mao A, et al. Autophagy inhibition plays a protective role in ferroptosis induced by Alcohol via the p62⁃Keap1⁃Nrf2 pathway[J]. J Agric Food Chem, 2021,69(33):9671⁃9683. doi: 10.1021/acs.jafc.1c03751. |
[14] | Chen J, Li X, Ge C, et al. The multifaceted role of ferroptosis in liver disease[J]. Cell Death Differ, 2022,29(3):467⁃480. doi: 10.1038/s41418⁃022⁃00941⁃0. |
[15] | Doll S, Freitas FP, Shah R, et al. FSP1 is a glutathione⁃independent ferroptosis suppressor[J]. Nature, 2019,575(7784):693⁃698. doi: 10.1038/s41586⁃019⁃1707⁃0. |
[16] | Bersuker K, Hendricks JM, Li Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature, 2019,575(7784):688⁃692. doi: 10.1038/s41586⁃019⁃1705⁃2. |
[17] | Wang W, Green M, Choi JE, et al. CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy[J]. Nature, 2019,569(7755):270⁃274. doi: 10.1038/s41586⁃019⁃1170⁃y. |
[18] | Wu J, Minikes AM, Gao M, et al. Intercellular interaction dictates cancer cell ferroptosis via NF2⁃YAP signalling[J]. Nature, 2019,572(7769):402⁃406. doi: 10.1038/s41586⁃019⁃1426⁃6. |
[19] | Lee H, Zandkarimi F, Zhang Y, et al. Energy⁃stress⁃mediated AMPK activation inhibits ferroptosis[J]. Nat Cell Biol, 2020,22(2):225⁃234. doi: 10.1038/s41556⁃020⁃0461⁃8. |
[20] | 李春英, 李舒丽. 白癜风发病机制研究热点解析[J]. 中华皮肤科杂志, 2019,52(9):593⁃597. doi: 10.3760/cma.j.issn.0412⁃4030.2019.09.001. |
[21] | Xuan Y, Yang Y, Xiang L, et al. The role of oxidative stress in the pathogenesis of vitiligo: a culprit for melanocyte death[J]. Oxid Med Cell Longev, 2022,2022:8498472. doi: 10.1155/2022/8498472. |
[22] | Villalpando⁃Rodriguez GE, Blankstein AR, Konzelman C, et al. Lysosomal destabilizing drug siramesine and the dual tyrosine kinase inhibitor lapatinib induce a synergistic ferroptosis through reduced heme oxygenase⁃1 (HO⁃1) levels[J]. Oxid Med Cell Longev, 2019,2019:9561281. doi: 10.1155/2019/9561281. |
[23] | Pelle E, Huang X, Zhang Q, et al. Increased endogenous DNA oxidation correlates to increased iron levels in melanocytes relative to keratinocytes[J]. J Cosmet Sci, 2014,65(5):277⁃284. |
[24] | Wu X, Jin S, Yang Y, et al. Altered expression of ferroptosis markers and iron metabolism reveals a potential role of ferroptosis in vitiligo[J]. Pigment Cell Melanoma Res, 2022,35(3):328⁃341. doi: 10.1111/pcmr.13032. |
[25] | Orlik C, Deibel D, Küblbeck J, et al. Keratinocytes costimulate naive human T cells via CD2: a potential target to prevent the development of proinflammatory Th1 cells in the skin[J]. Cell Mol Immunol, 2020,17(4):380⁃394. doi: 10.1038/s41423⁃019⁃0261⁃x. |
[26] | Shou Y, Yang L, Yang Y, et al. Inhibition of keratinocyte ferroptosis suppresses psoriatic inflammation[J]. Cell Death Dis, 2021,12(11):1009. doi: 10.1038/s41419⁃021⁃04284⁃5. |
[27] | Rashmi R, Yuti AM, Basavaraj KH. Enhanced ferritin/iron ratio in psoriasis[J]. Indian J Med Res, 2012,135(5):662⁃665. |
[28] | Shahidi⁃Dadras M, Namazi N, Younespour S. Comparative analysis of serum copper, iron, ceruloplasmin, and transferrin levels in mild and severe psoriasis vulgaris in iranian patients[J]. Indian Dermatol Online J, 2017,8(4):250⁃253. doi: 10. 4103/idoj.IDOJ_230_16. |
[29] | Ahmed B, Qadir MI, Ghafoor S. Malignant melanoma: skin cancer⁃diagnosis, prevention, and treatment[J]. Crit Rev Eukaryot Gene Expr, 2020,30(4):291⁃297. doi: 10.1615/Crit RevEukaryotGeneExpr.2020028454. |
[30] | Wang Z, Jin D, Ma D, et al. Ferroptosis suppressed the growth of melanoma that may be related to DNA damage[J]. Dermatol Ther, 2019,32(4):e12921. doi: 10.1111/dth.12921. |
[31] | Hartman ML. Non⁃apoptotic cell death signaling pathways in melanoma[J]. Int J Mol Sci, 2020,21(8):2980. doi: 10.3390/ijms21082980. |
[32] | Tsoi J, Robert L, Paraiso K, et al. Multi⁃stage differentiation defines melanoma subtypes with differential vulnerability to drug⁃induced iron⁃dependent oxidative stress[J]. Cancer Cell, 2018,33(5):890⁃904. doi: 10.1016/j.ccell.2018.03.017. |
[33] | Viswanathan VS, Ryan MJ, Dhruv HD, et al. Dependency of a therapy⁃resistant state of cancer cells on a lipid peroxidase pathway[J]. Nature, 2017,547(7664):453⁃457. doi: 10.1038/nature23007. |
[34] | Hangauer MJ, Viswanathan VS, Ryan MJ, et al. Drug⁃tolerant persister cancer cells are vulnerable to GPX4 inhibition[J]. Nature, 2017,551(7679):247⁃250. doi: 10.1038/nature24297. |
[35] | Luo M, Wu L, Zhang K, et al. miR⁃137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma[J]. Cell Death Differ, 2018,25(8):1457⁃1472. doi: 10.1038/s41418⁃017⁃0053⁃8. |
[36] | Zhang K, Wu L, Zhang P, et al. miR⁃9 regulates ferroptosis by targeting glutamic⁃oxaloacetic transaminase GOT1 in melanoma[J]. Mol Carcinog, 2018,57(11):1566⁃1576. doi: 10.1002/mc. 22878. |
[37] | Ubellacker JM, Tasdogan A, Ramesh V, et al. Lymph protects metastasizing melanoma cells from ferroptosis[J]. Nature, 2020,585(7823):113⁃118. doi: 10.1038/s41586⁃020⁃2623⁃z. |
[38] | Chen Q, Wang J, Xiang M, et al. The potential role of ferroptosis in systemic lupus erythematosus[J]. Front Immunol, 2022,13:855622. doi: 10.3389/fimmu.2022.855622. |
[39] | Li P, Jiang M, Li K, et al. Glutathione peroxidase 4⁃regulated neutrophil ferroptosis induces systemic autoimmunity[J]. Nat Immunol, 2021,22(9):1107⁃1117. doi: 10.1038/s41590⁃021⁃00993⁃3. |
[40] | Wen Q, Liu J, Kang R, et al. The release and activity of HMGB1 in ferroptosis[J]. Biochem Biophys Res Commun, 2019,510(2):278⁃283. doi: 10.1016/j.bbrc.2019.01.090. |
[41] | Vats K, Kruglov O, Mizes A, et al. Keratinocyte death by ferroptosis initiates skin inflammation after UVB exposure[J]. Redox Biol, 2021,47:102143. doi: 10.1016/j.redox.2021.102143. |
[42] | Liu T, Son M, Diamond B. HMGB1 in systemic lupus erythematosus[J]. Front Immunol, 2020,11:1057. doi: 10.3389/fimmu.2020.01057. |
[43] | Ni S, Yuan Y, Kuang Y, et al. Iron metabolism and immune regulation[J]. Front Immunol, 2022,13:816282. doi: 10.3389/fimmu.2022.816282. |
[1] | Chen Jiaqi, Zhang Jin, Tang Jun. Relationships between coronavirus disease 2019 and psoriasis [J]. Chinese Journal of Dermatology, 2025, 58(1): 84-88. |
[2] | Chinese Association of Rehabilitation Dermatology, Chinese Association of Photodynamic Therapy and Rehabilitation, Photodynamic Therapy Cooperation Center, Chinese Society of Dermatology . Expert consensus on clinical application of aminolevulinic acid photodynamic therapy in non-melanoma skin cancers (2025 edition) [J]. Chinese Journal of Dermatology, 2025, 58(1): 9-19. |
[3] | Wu Caoying, Yang Yongting, Wang Chun, Shen Yaoyuan, Jia Huihui, Li Tingting, Zhao Juan, Kang Xiaojing. Clinicopathological features and prognostic analysis of melanoma in the elderly [J]. Chinese Journal of Dermatology, 2025, 58(1): 40-46. |
[4] | Jin Lan, Qiu Yun, Wang Weijia, Kang Xiaojing, Ding Yuan. Clinical efficacy and safety of biological agents in the treatment of moderate-to-severe psoriasis in 124 elderly patients: a retrospective analysis [J]. Chinese Journal of Dermatology, 2025, 58(1): 47-52. |
[5] | Wang Bo, Zheng Jie. Considerations in the treatment of elderly patients with psoriasis and atopic dermatitis using biologics and small-molecule drugs [J]. Chinese Journal of Dermatology, 2025, 58(1): 72-75. |
[6] | Ai Fangting, Sun Zijun, Miao Guoying, Yao Chunxia. Role of calcium-sensing receptors in the pathophysiology of skin of the elderly [J]. Chinese Journal of Dermatology, 2025, 58(1): 76-79. |
[7] | Hao Feng, Liu Guoyan. Application of optical coherence tomography in dermatology [J]. Chinese Journal of Dermatology, 2024, 57(9): 853-857. |
[8] | Zhang Jiaqi, Wu Fan, Han Yuqing, Liu Qi, Pan Yao. Application of multi-photon microscopy in dermatology [J]. Chinese Journal of Dermatology, 2024, 57(9): 857-862. |
[9] | Zou Xianbiao, Chen Jinchun, Zeng Yue, Hao Yi. Application of ultrasonography in dermatology: progress and prospects [J]. Chinese Journal of Dermatology, 2024, 57(9): 785-790. |
[10] | Zeng Yue, Shao Huihong, Lin Shiwen, Wen Rou, Zou Xianbiao. Application of a wearable teleconsultation device in diagnosis of common skin diseases [J]. Chinese Journal of Dermatology, 2024, 57(9): 797-800. |
[11] | Qiao Jiaxi, Xia Ping, Chen Liuqing. Analysis of dermoscopic and reflectance confocal microscopic features of psoriatic lesions before and after treatment with secukinumab [J]. Chinese Journal of Dermatology, 2024, 57(9): 825-829. |
[12] | Combination of Traditional and Western Medicine Dermatology, Chinese Society of Dermatology, China Dermatologist Association. Expert consensus on the application of reflectance confocal microscopy in common melanocytic skin tumors(2024) [J]. Chinese Journal of Dermatology, 2024, 57(9): 775-784. |
[13] | Lin Ziyuan, Pang Tianyi, Wu Jingwen, Jin Hui, . Role of polycyclic aromatic hydrocarbons in the occurrence and development of inflammatory skin diseases [J]. Chinese Journal of Dermatology, 2024, 57(8): 765-769. |
[14] | Zhang Yamei, Liu Guohao, Tao Yue, Bao Jun. Role of JNK/c-Jun signaling pathway mediated by endoplasmic reticulum stress in triptolide-induced apoptosis of melanoma A375 cells in mice [J]. Chinese Journal of Dermatology, 2024, 57(8): 709-714. |
[15] | Li Jing, Li Zhi, Yu Yin, Liu Sutao, Diao Qingchun, Wang Can. Role of antioncogenes ADCY2/4/5/8 in cutaneous melanoma [J]. Chinese Journal of Dermatology, 2024, 57(8): 698-708. |
|