[1] |
Chang WL, Ko CH. The role of oxidative stress in vitiligo: an update on its pathogenesis and therapeutic implications[J]. Cells, 2023,12(6):936. doi: 10.3390/cells12060936.
|
[2] |
Schallreuter KU, Gibbons NC, Zothner C, et al. Butyrylcholinesterase is present in the human epidermis and is regulated by H2O2: more evidence for oxidative stress in vitiligo[J]. Biochem Biophys Res Commun, 2006,349(3):931⁃938. doi: 10.1016/j.bbrc.2006.08.138.
|
[3] |
Premkumar M, Bhaskar Kalarani I, Mohammed V, et al. An extensive review of vitiligo⁃associated conditions[J]. Int J Dermatol Venerol,2024,7(1):44⁃51. doi: 10.1097/JD9.0000000 000000346.
|
[4] |
Wilkie AL, Jordan SA, Jackson IJ. Neural crest progenitors of the melanocyte lineage: coat colour patterns revisited[J]. Development, 2002,129(14):3349⁃3357. doi:10.1242/dev.129. 14.3349.
|
[5] |
You S, Cho YH, Byun JS, et al. Melanocyte⁃specific CD8+ T cells are associated with epidermal depigmentation in a novel mouse model of vitiligo[J]. Clin Exp Immunol, 2013,174(1):38⁃44. doi: 10.1111/cei.12146.
|
[6] |
Aydin F, Senturk N, Sahin B, et al. A practical method for the estimation of vitiligo surface area: a comparison between the point counting and digital planimetry techniques[J]. Eur J Dermatol, 2007,17(1):30⁃32. doi: 10.1684/ejd.2007.0186.
|
[7] |
Richmond JM, Bangari DS, Essien KI, et al. Keratinocyte⁃derived chemokines orchestrate T⁃cell positioning in the epidermis during vitiligo and may serve as biomarkers of disease[J]. J Invest Dermatol, 2017,137(2):350⁃358. doi: 10.1016/j.jid.2016.09.016.
|
[8] |
Liao Z, Yao Y, Dong B, et al. Involvement of interferon γ⁃producing mast cells in immune responses against melanocytes in vitiligo requires MrgX2 activation[J]. Chin Med J (Engl), 2024. doi: 10.1097/CM9.0000000000003173.
|
[9] |
Katayama I, Takahashi A, Yang F, et al. The two faces of mast cells in vitiligo pathogenesis[J]. Explor Immunol, 2021,1:269⁃284. doi: 10.37349/ei.2021.00018.
|
[10] |
Barygina V, Becatti M, Lotti T, et al. ROS⁃challenged keratinocytes as a new model for oxidative stress⁃mediated skin diseases[J]. J Cell Biochem, 2019,120(1):28⁃36. doi: 10.1002/jcb.27485.
|
[11] |
Ardizzone A, Repici A, Capra AP, et al. Efficacy of the radical scavenger, tempol, to reduce inflammation and oxidative stress in a murine model of atopic dermatitis[J]. Antioxidants (Basel), 2023,12(6):1278. doi: 10.3390/antiox12061278.
|
[12] |
Werber J, Wang YJ, Milligan M, et al. Analysis of 2,2'⁃azobis (2⁃amidinopropane) dihydrochloride degradation and hydrolysis in aqueous solutions[J]. J Pharm Sci, 2011,100(8):3307⁃3315. doi: 10.1002/jps.22578.
|
[13] |
Wilcox CS. Effects of tempol and redox⁃cycling nitroxides in models of oxidative stress[J]. Pharmacol Ther, 2010,126(2):119⁃145. doi: 10.1016/j.pharmthera.2010.01.003.
|
[14] |
Lee AY. Role of keratinocytes in the development of vitiligo[J]. Ann Dermatol, 2012,24(2):115⁃125. doi: 10.5021/ad.2012.24. 2.115.
|
[15] |
Kasamatsu S, Hachiya A, Shimotoyodome Y, et al. The inhibitory effect of a Platycodon root extract on ultraviolet B⁃induced pigmentation due to a decrease in Kit expression[J]. J Nat Med, 2014,68(3):643⁃646. doi:10.1007/s11418⁃014⁃0836⁃x.
|
[16] |
Ray P, Krishnamoorthy N, Oriss TB, et al. Signaling of c⁃kit in dendritic cells influences adaptive immunity[J]. Ann N Y Acad Sci, 2010,1183:104⁃122. doi: 10.1111/j.1749⁃6632.2009.05122.x.
|
[17] |
Metz JM, Smith D, Mick R, et al. A phase Ⅰstudy of topical Tempol for the prevention of alopecia induced by whole brain radiotherapy[J]. Clin Cancer Res, 2004,10(19):6411⁃6417. doi: 10.1158/1078⁃0432.CCR⁃04⁃0658.
|