[1] |
Zhang C, Wang D, Wang J, et al. Escape of hair follicle stem cells causes stem cell exhaustion during aging[J]. Nat Aging, 2021,1(10):889⁃903. doi: 10.1038/s43587⁃021⁃00103⁃w.
|
[2] |
Ji J, Ho BS, Qian G, et al. Aging in hair follicle stem cells and niche microenvironment[J]. J Dermatol, 2017,44(10):1097⁃1104. doi: 10.1111/1346⁃8138.13897.
|
[3] |
Calvo Peretti M, Caballero Uribe N, Régnier A, et al. Look at your hair the way you look at your face: concept of total facial skin and hair care[J]. Skin Appendage Disord, 2020,6(2):67⁃76. doi: 10.1159/000504306.
|
[4] |
Choi K, Park SH, Park SY, et al. The stem cell quiescence and niche signaling is disturbed in the hair follicle of the hairpoor mouse, an MUHH model mouse[J]. Stem Cell Res Ther, 2022,13(1):211. doi: 10.1186/s13287⁃022⁃02898⁃w.
|
[5] |
Zhang C, Wang D, Dowell R, et al. Single cell analysis of transcriptome and open chromatin reveals the dynamics of hair follicle stem cell aging[J]. Front Aging, 2023,4:1192149. doi: 10.3389/fragi.2023.1192149.
|
[6] |
Shin W, Rosin NL, Sparks H, et al. Dysfunction of hair follicle mesenchymal progenitors contributes to age⁃associated hair loss[J]. Dev Cell, 2020,53(2):185⁃198.e7. doi: 10.1016/j.devcel. 2020.03.019.
|
[7] |
Koester J, Miroshnikova YA, Ghatak S, et al. Niche stiffening compromises hair follicle stem cell potential during ageing by reducing bivalent promoter accessibility[J]. Nat Cell Biol, 2021,23(7):771⁃781. doi: 10.1038/s41556⁃021⁃00705⁃x.
|
[8] |
Stone RC, Aviv A, Paus R. Telomere dynamics and telomerase in the biology of hair follicles and their stem cells as a model for aging research[J]. J Invest Dermatol, 2021,141(4S):1031⁃1040. doi: 10.1016/j.jid.2020.12.006.
|
[9] |
Ge Y, Miao Y, Gur⁃Cohen S, et al. The aging skin microenvironment dictates stem cell behavior[J]. Proc Natl Acad Sci U S A, 2020,117(10):5339⁃5350. doi: 10.1073/pnas. 1901720117.
|
[10] |
Jang H, Jo Y, Lee JH, et al. Aging of hair follicle stem cells and their niches[J]. BMB Rep, 2023,56(1):2⁃9. doi: 10.5483/BMB Rep.2022⁃0183.
|
[11] |
Xie Y, Chen D, Jiang K, et al. Hair shaft miniaturization causes stem cell depletion through mechanosensory signals mediated by a Piezo1⁃calcium⁃TNF⁃α axis[J]. Cell Stem Cell, 2022,29(1):70⁃85.e6. doi: 10.1016/j.stem.2021.09.009.
|
[12] |
Zhang B, Chen T. Local and systemic mechanisms that control the hair follicle stem cell niche[J]. Nat Rev Mol Cell Biol, 2024,25(2):87⁃100. doi: 10.1038/s41580⁃023⁃00662⁃3.
|
[13] |
Wen M, Ying Y, Xiao X, et al. Ox40⁃Cre⁃mediated deletion of BRD4 reveals an unexpected phenotype of hair follicle stem cells in alopecia[J]. JCI Insight, 2022,7(23):e164534. doi: 10.1172/jci.insight.164534.
|
[14] |
房强. CBP在小鼠毛囊干细胞衰老中的功能与机制研究[D]. 上海: 同济大学, 2022. doi: 10.27372/d.cnki.gtjsu.2022.000486.
|
[15] |
Lay K, Kume T, Fuchs E. FOXC1 maintains the hair follicle stem cell niche and governs stem cell quiescence to preserve long⁃term tissue⁃regenerating potential[J]. Proc Natl Acad Sci U S A, 2016,113(11):E1506⁃E1515. doi: 10.1073/pnas.1601569113.
|
[16] |
Zhou LB, Cao Q, Ding Q, et al. Transcription factor FOXC1 positively regulates SFRP1 expression in androgenetic alopecia[J]. Exp Cell Res, 2021,404(1):112618. doi: 10.1016/j.yexcr. 2021.112618.
|
[17] |
Ankawa R, Goldberger N, Yosefzon Y, et al. Apoptotic cells represent a dynamic stem cell niche governing proliferation and tissue regeneration[J]. Dev Cell, 2021,56(13):1900⁃1916.e5. doi: 10.1016/j.devcel.2021.06.008.
|
[18] |
Yang Q, Zhang J, Bao Q, et al. Foxp1 and Foxp4 deletion causes the loss of follicle stem cell niche and cyclic hair shedding by inducing inner bulge cell apoptosis[J]. Stem Cells, 2022,40(9):843⁃856. doi: 10.1093/stmcls/sxac045.
|
[19] |
Roy S, Mehta D, Paradkar A, et al. Dab2 (Disabled⁃2), an adaptor protein, regulates self⁃renewal of hair follicle stem cells[J]. Commun Biol, 2024,7(1):525. doi: 10.1038/s42003⁃024⁃06047⁃2.
|
[20] |
Liu F, Liu S, Luo X, et al. Combatting ageing in dermal papilla cells and promoting hair follicle regeneration using exosomes from human hair follicle dermal sheath cup cells[J]. Exp Dermatol, 2024,33(1):e14948. doi: 10.1111/exd.14948.
|
[21] |
Li K, Liu F, He Y, et al. The homing of exogenous hair follicle mesenchymal stem cells into hair follicle niches[J]. JCI Insight, 2023,8(24):e173549. doi: 10.1172/jci.insight.173549.
|
[22] |
Abreu CM, Pirraco RP, Reis RL, et al. Interfollicular epidermal stem⁃like cells for the recreation of the hair follicle epithelial compartment[J]. Stem Cell Res Ther, 2021,12(1):62. doi: 10. 1186/s13287⁃020⁃02104⁃9.
|
[23] |
Zheng W, Xu CH. Innovative approaches and advances for hair follicle regeneration[J]. ACS Biomater Sci Eng, 2023,9(5):2251⁃2276. doi: 10.1021/acsbiomaterials.3c00028.
|
[24] |
Martino PA, Heitman N, Rendl M. The dermal sheath: an emerging component of the hair follicle stem cell niche[J]. Exp Dermatol, 2021,30(4):512⁃521. doi: 10.1111/exd.14204.
|
[25] |
Geueke A, Mantellato G, Kuester F, et al. The anti⁃apoptotic Bcl⁃2 protein regulates hair follicle stem cell function[J]. EMBO Rep, 2021,22(10):e52301. doi: 10.15252/embr.202052301.
|
[26] |
Wang J, Fu Y, Huang W, et al. MicroRNA⁃205 promotes hair regeneration by modulating mechanical properties of hair follicle stem cells[J]. Proc Natl Acad Sci U S A, 2023,120(22):e2220635120. doi: 10.1073/pnas.2220635120.
|