中华皮肤科杂志 ›› 2024, e20230226.doi: 10.35541/cjd.20230226
陈钰虹 吕中法
收稿日期:
2023-04-20
修回日期:
2024-06-06
发布日期:
2024-09-29
通讯作者:
吕中法
E-mail:lzfskin@zju.edu.cn
基金资助:
Chen Yuhong, Lyu Zhongfa
Received:
2023-04-20
Revised:
2024-06-06
Published:
2024-09-29
Contact:
Lyu Zhongfa
E-mail:lzfskin@zju.edu.cn
Supported by:
摘要: 【摘要】 毛囊是皮肤附属器,具有复杂精细的结构和周期性自我更新能力。毛囊生长周期包括生长期、退行期和休止期,其有序更新对维持毛发生长具有重要意义。目前认为Wnt、骨形态发生蛋白、Notch等信号通路参与毛囊生长周期的调控。随着研究的深入,基于上述信号通路的各类调控方式被逐步揭示,如生长因子、非编码RNA、免疫反应等。本文阐述相关分子机制和调控方式,为深入了解毛囊生长周期的调控机制和拓展脱发治疗手段提供理论参考。
陈钰虹 吕中法. 毛囊生长周期调控的机制进展[J]. 中华皮肤科杂志, 2024,e20230226. doi:10.35541/cjd.20230226
Chen Yuhong, Lyu Zhongfa. Regulatory mechanisms underlying the hair cycle[J]. Chinese Journal of Dermatology,2024,e20230226. doi:10.35541/cjd.20230226
[1] | Ji S, Zhu Z, Sun X, et al. Functional hair follicle regeneration: an updated review[J]. Signal Transduct Target Ther, 2021,6(1):66. doi: 10.1038/s41392⁃020⁃00441⁃y. |
[2] | Müller⁃Röver S, Handjiski B, van der Veen C, et al. A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages[J]. J Invest Dermatol, 2001,117(1):3⁃15. doi: 10.1046/j.0022⁃202x.2001.01377.x. |
[3] | Oh JW, Kloepper J, Langan EA, et al. A guide to studying human hair follicle cycling in vivo[J]. J Invest Dermatol, 2016,136(1):34⁃44. doi: 10.1038/JID.2015.354. |
[4] | Sakamoto K, Jin SP, Goel S, et al. Disruption of the endopeptidase ADAM10⁃Notch signaling axis leads to skin dysbiosis and innate lymphoid cell⁃mediated hair follicle destruction[J]. Immunity, 2021,54(10):2321⁃2337.e10. doi: 10.1016/j.immuni.2021.09.001. |
[5] | Wang X, Liu Y, He J, et al. Regulation of signaling pathways in hair follicle stem cells[J]. Burns Trauma, 2022,10:tkac022. doi: 10.1093/burnst/tkac022. |
[6] | Shimizu Y, Ntege EH, Sunami H, et al. Regenerative medicine strategies for hair growth and regeneration: a narrative review of literature[J]. Regen Ther, 2022,21:527⁃539. doi: 10.1016/j.reth.2022.10.005. |
[7] | Fu J, Hsu W. Epidermal Wnt controls hair follicle induction by orchestrating dynamic signaling crosstalk between the epidermis and dermis[J]. J Invest Dermatol, 2013,133(4):890⁃898. doi: 10.1038/jid.2012.407. |
[8] | Gentile P, Garcovich S. Advances in regenerative stem cell therapy in androgenic alopecia and hair loss: Wnt pathway, growth⁃factor, and mesenchymal stem cell signaling impact analysis on cell growth and hair follicle development[J]. Cells, 2019,8(5):466. doi: 10.3390/cells8050466. |
[9] | Ryu YC, Kim YR, Park J, et al. Wnt/β⁃catenin signaling activator restores hair regeneration suppressed by diabetes mellitus[J]. BMB Rep, 2022,55(11):559⁃564. doi: 10.5483/BMBRep.2022.55.11.081. |
[10] | Li S, Chen J, Chen F, et al. Liposomal honokiol promotes hair growth via activating Wnt3a/β⁃catenin signaling pathway and down regulating TGF⁃β1 in C57BL/6N mice[J]. Biomed Pharmacother, 2021,141:111793. doi: 10.1016/j.biopha.2021. 111793. |
[11] | Kandyba E, Kobielak K. Wnt7b is an important intrinsic regulator of hair follicle stem cell homeostasis and hair follicle cycling[J]. Stem Cells, 2014,32(4):886⁃901. doi: 10.1002/stem. 1599. |
[12] | Wu P, Zhang Y, Xing Y, et al. The balance of Bmp6 and Wnt10b regulates the telogen⁃anagen transition of hair follicles[J]. Cell Commun Signal, 2019,17(1):16. doi: 10.1186/s12964⁃019⁃0330⁃x. |
[13] | Kim H, Jang Y, Kim EH, et al. Potential of colostrum⁃derived exosomes for promoting hair regeneration through the transition from telogen to anagen phase[J]. Front Cell Dev Biol, 2022,10:815205. doi: 10.3389/fcell.2022.815205. |
[14] | Zou ML, Chen ZH, Teng YY, et al. The Smad dependent TGF⁃β and BMP signaling pathway in bone remodeling and therapies[J]. Front Mol Biosci, 2021,8:593310. doi: 10.3389/fmolb.2021. 593310. |
[15] | Gough NR, Xiang X, Mishra L. TGF⁃β signaling in liver, pancreas, and gastrointestinal diseases and cancer[J]. Gastroenterology, 2021,161(2):434⁃452.e15. doi: 10.1053/j.gastro.2021.04.064. |
[16] | Plikus MV, Mayer JA, de la Cruz D, et al. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration[J]. Nature, 2008,451(7176):340⁃344. doi: 10.1038/nature06457. |
[17] | Geyfman M, Plikus MV, Treffeisen E, et al. Resting no more: re⁃defining telogen, the maintenance stage of the hair growth cycle[J]. Biol Rev Camb Philos Soc, 2015,90(4):1179⁃1196. doi: 10. 1111/brv.12151. |
[18] | Wang ZD, Feng Y, Sun L, et al. Anti⁃androgenetic alopecia effect of policosanol from Chinese wax by regulating abnormal hormone levels to suppress premature hair follicle entry into the regression phase[J]. Biomed Pharmacother, 2021,136:111241. doi: 10.1016/j.biopha.2021.111241. |
[19] | Zhang W, Wang N, Zhang T, et al. Roles of melatonin in goat hair follicle stem cell proliferation and pluripotency through regulating the Wnt signaling pathway[J]. Front Cell Dev Biol, 2021,9:686805. doi: 10.3389/fcell.2021.686805. |
[20] | Condorelli AG, El Hachem M, Zambruno G, et al. Notch⁃ing up knowledge on molecular mechanisms of skin fibrosis: focus on the multifaceted Notch signalling pathway[J]. J Biomed Sci, 2021,28(1):36. doi: 10.1186/s12929⁃021⁃00732⁃8. |
[21] | Demehri S, Kopan R. Notch signaling in bulge stem cells is not required for selection of hair follicle fate[J]. Development, 2009,136(6):891⁃896. doi: 10.1242/dev.030700. |
[22] | Hu XM, Li ZX, Zhang DY, et al. A systematic summary of survival and death signalling during the life of hair follicle stem cells[J]. Stem Cell Res Ther, 2021,12(1):453. doi: 10.1186/s13287⁃021⁃02527⁃y. |
[23] | Jaiswal A, Singh R. Homeostases of epidermis and hair follicle, and development of basal cell carcinoma[J]. Biochim Biophys Acta Rev Cancer, 2022,1877(5):188795. doi: 10.1016/j.bbcan. 2022.188795. |
[24] | Morinaga H, Mohri Y, Grachtchouk M, et al. Obesity accelerates hair thinning by stem cell⁃centric converging mechanisms[J]. Nature, 2021,595(7866):266⁃271. doi: 10.1038/s41586⁃021⁃03624⁃x. |
[25] | Suen WJ, Li ST, Yang LT. Hes1 regulates anagen initiation and hair follicle regeneration through modulation of hedgehog signaling[J]. Stem Cells, 2020,38(2):301⁃314. doi: 10.1002/stem.3117. |
[26] | Wang J, Hu K, Cai X, et al. Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis[J]. Acta Pharm Sin B, 2022,12(1):18⁃32. doi: 10.1016/j.apsb.2021.07.023. |
[27] | Zhang X, Zhou D, Ma T, et al. Vascular endothelial growth factor protects CD200⁃rich and CD34⁃positive hair follicle stem cells against androgen⁃induced apoptosis through the phosphoinositide 3⁃kinase/Akt pathway in patients with androgenic alopecia[J]. Dermatol Surg, 2020,46(3):358⁃368. doi: 10.1097/DSS.0000000 000002091. |
[28] | Kim CS, Ding X, Allmeroth K, et al. Glutamine metabolism controls stem cell fate reversibility and long⁃term maintenance in the hair follicle[J]. Cell Metab, 2020,32(4):629⁃642.e8. doi: 10.1016/j.cmet.2020.08.011. |
[29] | Chen Y, Fan Z, Wang X, et al. PI3K/Akt signaling pathway is essential for de novo hair follicle regeneration[J]. Stem Cell Res Ther, 2020,11(1):144. doi: 10.1186/s13287⁃020⁃01650⁃6. |
[30] | Li X. The FGF metabolic axis[J]. Front Med, 2019,13(5):511⁃530. doi: 10.1007/s11684⁃019⁃0711⁃y. |
[31] | Higgins CA, Petukhova L, Harel S, et al. FGF5 is a crucial regulator of hair length in humans[J]. Proc Natl Acad Sci U S A, 2014,111(29):10648⁃10653. doi: 10.1073/pnas.1402862111. |
[32] | Guo K, Wang L, Zhong Y, et al. Cucurbitacin promotes hair growth in mice by inhibiting the expression of fibroblast growth factor 18[J]. Ann Transl Med, 2022,10(20):1104. doi: 10.21037/atm⁃22⁃4423. |
[33] | Nakayama F, Hagiwara A, Kimura M, et al. Evaluation of radiation⁃induced hair follicle apoptosis in mice and the preventive effects of fibroblast growth factor⁃1[J]. Exp Dermatol, 2009,18(10):889⁃892. doi: 10.1111/j.1600⁃0625.2009.00849.x. |
[34] | Kiso M, Hamazaki TS, Itoh M, et al. Synergistic effect of PDGF and FGF2 for cell proliferation and hair inductive activity in murine vibrissal dermal papilla in vitro[J]. J Dermatol Sci, 2015,79(2):110⁃118. doi: 10.1016/j.jdermsci.2015.04.007. |
[35] | Gay D, Kwon O, Zhang Z, et al. FGF9 from dermal γδ T cells induces hair follicle neogenesis after wounding[J]. Nat Med, 2013,19(7):916⁃923. doi: 10.1038/nm.3181. |
[36] | Woo J, Suh W, Sung JH. Hair growth regulation by fibroblast growth factor 12 (FGF12)[J]. Int J Mol Sci, 2022,23(16):9467. doi: 10.3390/ijms23169467. |
[37] | Kawano M, Suzuki S, Suzuki M, et al. Bulge⁃ and basal layer⁃specific expression of fibroblast growth factor⁃13 (FHF⁃2) in mouse skin[J]. J Invest Dermatol, 2004,122(5):1084⁃1090. doi: 10.1111/j.0022⁃202X.2004.22514.x. |
[38] | Xu XG, Gong L, Jiang TL, et al. Stimulation of mouse vibrissal follicle growth by recombinant human fibroblast growth factor 20[J]. Biotechnol Lett, 2018,40(6):1009⁃1014. doi: 10.1007/s10529⁃018⁃2554⁃z. |
[39] | Cai Q, He B, Wang S, et al. Message in a bubble: shuttling small RNAs and proteins between cells and interacting organisms using extracellular vesicles[J]. Annu Rev Plant Biol, 2021,72:497⁃524. doi: 10.1146/annurev⁃arplant⁃081720⁃010616. |
[40] | Yang H, Zhang Y, Du Z, et al. Hair follicle mesenchymal stem cell exosomal lncRNA H19 inhibited NLRP3 pyroptosis to promote diabetic mouse skin wound healing[J]. Aging (Albany NY), 2023,15(3):791⁃809. doi: 10.18632/aging.204513. |
[41] | Hu S, Li Z, Lutz H, et al. Dermal exosomes containing miR⁃218⁃5p promote hair regeneration by regulating β⁃catenin signaling[J]. Sci Adv, 2020,6(30):eaba1685. doi: 10.1126/sciadv.aba1685. |
[42] | Zhao B, Li J, Zhang X, et al. Exosomal miRNA⁃181a⁃5p from the cells of the hair follicle dermal papilla promotes the hair follicle growth and development via the Wnt/β⁃catenin signaling pathway[J]. Int J Biol Macromol, 2022,207:110⁃120. doi: 10.1016/j.ijbiomac.2022.02.177. |
[43] | Liu F, Zhang X, Peng Y, et al. miR⁃24 controls the regenerative competence of hair follicle progenitors by targeting Plk3[J]. Cell Rep, 2021,35(10):109225. doi: 10.1016/j.celrep.2021.109225. |
[44] | Warshauer E, Samuelov L, Sarig O, et al. RBM28, a protein deficient in ANE syndrome, regulates hair follicle growth via miR⁃203 and p63[J]. Exp Dermatol, 2015,24(8):618⁃622. doi: 10.1111/exd.12737. |
[45] | Zhai B, Zhang L, Wang C, et al. Identification of microRNA⁃21 target genes associated with hair follicle development in sheep[J]. PeerJ, 2019,7:e7167. doi: 10.7717/peerj.7167. |
[46] | Du KT, Deng JQ, He XG, et al. MiR⁃214 regulates the human hair follicle stem cell proliferation and differentiation by targeting EZH2 and Wnt/β⁃catenin signaling way in vitro[J]. Tissue Eng Regen Med, 2018,15(3):341⁃350. doi: 10.1007/s13770⁃018⁃0118⁃x. |
[47] | Nojima T, Proudfoot NJ. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics[J]. Nat Rev Mol Cell Biol, 2022,23(6):389⁃406. doi: 10.1038/s41580⁃021⁃00447⁃6. |
[48] | Lin BJ, Zhu JY, Ye J, et al. LncRNA⁃XIST promotes dermal papilla induced hair follicle regeneration by targeting miR⁃424 to activate hedgehog signaling[J]. Cell Signal, 2020,72:109623. doi: 10.1016/j.cellsig.2020.109623. |
[49] | Ahmed MI, Mardaryev AN, Lewis CJ, et al. MicroRNA⁃21 is an important downstream component of BMP signalling in epidermal keratinocytes[J]. J Cell Sci, 2011,124(Pt 20):3399⁃3404. doi: 10.1242/jcs.086710. |
[50] | Wang E, Dai Z, Ferrante AW, et al. A subset of TREM2+ dermal macrophages secretes oncostatin m to maintain hair follicle stem cell quiescence and inhibit hair growth[J]. Cell Stem Cell, 2019,24(4):654⁃669.e6. doi: 10.1016/j.stem.2019.01.011. |
[51] | Castellana D, Paus R, Perez⁃Moreno M. Macrophages contribute to the cyclic activation of adult hair follicle stem cells[J]. PLoS Biol, 2014,12(12):e1002002. doi: 10.1371/journal.pbio.1002002. |
[52] | Maurer M, Fischer E, Handjiski B, et al. Activated skin mast cells are involved in murine hair follicle regression (catagen)[J]. Lab Invest, 1997,77(4):319⁃332. |
[53] | Christoph T, Müller⁃Röver S, Audring H, et al. The human hair follicle immune system: cellular composition and immune privilege[J]. Br J Dermatol, 2000,142(5):862⁃873. doi: 10.1046/j.1365⁃2133.2000.03464.x. |
[54] | Lin X, Zhu L, He J. Morphogenesis, growth cycle and molecular regulation of hair follicles[J]. Front Cell Dev Biol, 2022,10:899095. doi: 10.3389/fcell.2022.899095. |
[1] | 张硕 张韡 徐丹. 休止期脱发与新型冠状病毒感染的相关性及诊疗研究进展[J]. 中华皮肤科杂志, 2024, 57(8): 761-764. |
[2] | 张亚美 刘国豪 陶玥 包军. 内质网应激介导的 JNK/c-Jun信号通路在雷公藤内酯醇诱导小鼠体内黑色素瘤A375细胞凋亡中的作用研究[J]. 中华皮肤科杂志, 2024, 57(8): 709-714. |
[3] | 屈园园 王鹏 张景展 李婷婷 康晓静. circRNA_0001400/RELL1调控激活丝裂原激活蛋白激酶信号通路在卡波西肉瘤发生发展中的作用研究[J]. 中华皮肤科杂志, 2024, 57(8): 685-692. |
[4] | 鞠强 李嘉祺. [开放获取] 寻常痤疮再认识:从发病机制到治疗策略[J]. 中华皮肤科杂志, 2024, 57(4): 289-294. |
[5] | 裴璐 郑娜娜 曾荣 谢媛媛 徐浩翔 段志敏 刘宇甄 李岷. 痤疮丙酸杆菌生物膜诱导角质形成细胞发生炎症反应的分子机制研究[J]. 中华皮肤科杂志, 2024, 57(4): 302-308. |
[6] | 李嘉祺 梁梦晨 吴心怡 张秋婧 李思彤 莫小辉 鞠强. 中度寻常痤疮患者皮损毛囊内表皮葡萄球菌基因序列分型的初步研究[J]. 中华皮肤科杂志, 2024, 57(4): 295-301. |
[7] | 陶秋薇 陈启韬 邵光辉 李煜乾 朱麒麟 朱晶 李中明 杜旭峰. 硬斑病性秃发研究进展[J]. 中华皮肤科杂志, 2024, 0(3): 20220829-e20220829. |
[8] | 戴叶芹 宋秀祖. 毛囊及毛囊细胞移植在白癜风治疗中的应用进展[J]. 中华皮肤科杂志, 2024, 0(3): 20230274-e0230274. |
[9] | 杨洁 刘莉萍. 单细胞测序在毛发相关研究中的应用[J]. 中华皮肤科杂志, 2024, 0(3): 20230292-e20230292. |
[10] | 吴玉冰 王晓宇 安彬祎 吴莹莹 桑红 孔庆涛. 环鸟苷酸-腺苷酸合成酶-干扰素基因刺激因子信号通路在银屑病发病中的作用[J]. 中华皮肤科杂志, 2024, 0(3): 20230394-e20230394. |
[11] | 汪丽俐 杨斌 罗颖. 女性雄激素性秃发患者614例家族史和血清双氢睾酮水平与其发病的相关性分析[J]. 中华皮肤科杂志, 2024, 57(12): 1127-1129. |
[12] | 王涛 武毅 靳虹 戴叶芹 彭建中 许爱娥 宋秀祖. 回顾性分析电解白发联合毛囊移植治疗25例毛发部位白癜风的疗效[J]. 中华皮肤科杂志, 2024, 57(1): 46-49. |
[13] | 王雨婷 姚曼雪 周乃慧. 联合微针治疗雄激素性秃发的研究进展[J]. 中华皮肤科杂志, 2024, 57(1): 82-84. |
[14] | 孙小洁 刘毅. 抗雄激素药物治疗皮肤病研究进展[J]. 中华皮肤科杂志, 2023, 56(9): 882-885. |
[15] | 姚曼雪 周乃慧. mTOR信号通路在毛囊生物学中的研究进展[J]. 中华皮肤科杂志, 2023, 56(4): 369-372. |
|