中华皮肤科杂志 ›› 2025, Vol. 58 ›› Issue (7): 686-690.doi: 10.35541/cjd.20230226
陈钰虹 吕中法
收稿日期:
2023-04-20
修回日期:
2024-06-06
发布日期:
2025-07-03
通讯作者:
吕中法
E-mail:lzfskin@zju.edu.cn
基金资助:
Chen Yuhong, Lyu Zhongfa
Received:
2023-04-20
Revised:
2024-06-06
Published:
2025-07-03
Contact:
Lyu Zhongfa
E-mail:lzfskin@zju.edu.cn
Supported by:
摘要: 【摘要】 毛囊是皮肤附属器,具有复杂精细的结构和周期性自我更新能力。毛囊生长周期包括生长期、退行期和休止期,其有序更新对维持毛发生长具有重要意义。目前认为Wnt、骨形态发生蛋白、Notch等信号通路参与毛囊生长周期的调控。随着研究的深入,基于上述信号通路的各类调控方式被逐步揭示,如生长因子、非编码RNA、免疫反应等。本文阐述相关分子机制和调控方式,为深入了解毛囊生长周期的调控机制和拓展脱发治疗手段提供理论参考。
陈钰虹 吕中法. 毛囊生长周期调控的机制进展[J]. 中华皮肤科杂志, 2025,58(7):686-690. doi:10.35541/cjd.20230226
Chen Yuhong, Lyu Zhongfa. Regulatory mechanisms underlying the hair cycle[J]. Chinese Journal of Dermatology, 2025, 58(7): 686-690.doi:10.35541/cjd.20230226
[1] | Ji S, Zhu Z, Sun X, et al. Functional hair follicle regeneration: an updated review[J]. Signal Transduct Target Ther, 2021,6(1):66. doi: 10.1038/s41392⁃020⁃00441⁃y. |
[2] | Müller⁃Röver S, Handjiski B, van der Veen C, et al. A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages[J]. J Invest Dermatol, 2001,117(1):3⁃15. doi: 10.1046/j.0022⁃202x.2001.01377.x. |
[3] | Oh JW, Kloepper J, Langan EA, et al. A guide to studying human hair follicle cycling in vivo[J]. J Invest Dermatol, 2016,136(1):34⁃44. doi: 10.1038/JID.2015.354. |
[4] | Sakamoto K, Jin SP, Goel S, et al. Disruption of the endopeptidase ADAM10⁃Notch signaling axis leads to skin dysbiosis and innate lymphoid cell⁃mediated hair follicle destruction[J]. Immunity, 2021,54(10):2321⁃2337.e10. doi: 10.1016/j.immuni.2021.09.001. |
[5] | Wang X, Liu Y, He J, et al. Regulation of signaling pathways in hair follicle stem cells[J]. Burns Trauma, 2022,10:tkac022. doi: 10.1093/burnst/tkac022. |
[6] | Shimizu Y, Ntege EH, Sunami H, et al. Regenerative medicine strategies for hair growth and regeneration: a narrative review of literature[J]. Regen Ther, 2022,21:527⁃539. doi: 10.1016/j.reth.2022.10.005. |
[7] | Fu J, Hsu W. Epidermal Wnt controls hair follicle induction by orchestrating dynamic signaling crosstalk between the epidermis and dermis[J]. J Invest Dermatol, 2013,133(4):890⁃898. doi: 10.1038/jid.2012.407. |
[8] | Gentile P, Garcovich S. Advances in regenerative stem cell therapy in androgenic alopecia and hair loss: Wnt pathway, growth⁃factor, and mesenchymal stem cell signaling impact analysis on cell growth and hair follicle development[J]. Cells, 2019,8(5):466. doi: 10.3390/cells8050466. |
[9] | Ryu YC, Kim YR, Park J, et al. Wnt/β⁃catenin signaling activator restores hair regeneration suppressed by diabetes mellitus[J]. BMB Rep, 2022,55(11):559⁃564. doi: 10.5483/BMBRep.2022.55.11.081. |
[10] | Li S, Chen J, Chen F, et al. Liposomal honokiol promotes hair growth via activating Wnt3a/β⁃catenin signaling pathway and down regulating TGF⁃β1 in C57BL/6N mice[J]. Biomed Pharmacother, 2021,141:111793. doi: 10.1016/j.biopha.2021. 111793. |
[11] | Kandyba E, Kobielak K. Wnt7b is an important intrinsic regulator of hair follicle stem cell homeostasis and hair follicle cycling[J]. Stem Cells, 2014,32(4):886⁃901. doi: 10.1002/stem. 1599. |
[12] | Wu P, Zhang Y, Xing Y, et al. The balance of Bmp6 and Wnt10b regulates the telogen⁃anagen transition of hair follicles[J]. Cell Commun Signal, 2019,17(1):16. doi: 10.1186/s12964⁃019⁃0330⁃x. |
[13] | Kim H, Jang Y, Kim EH, et al. Potential of colostrum⁃derived exosomes for promoting hair regeneration through the transition from telogen to anagen phase[J]. Front Cell Dev Biol, 2022,10:815205. doi: 10.3389/fcell.2022.815205. |
[14] | Zou ML, Chen ZH, Teng YY, et al. The Smad dependent TGF⁃β and BMP signaling pathway in bone remodeling and therapies[J]. Front Mol Biosci, 2021,8:593310. doi: 10.3389/fmolb.2021. 593310. |
[15] | Gough NR, Xiang X, Mishra L. TGF⁃β signaling in liver, pancreas, and gastrointestinal diseases and cancer[J]. Gastroenterology, 2021,161(2):434⁃452.e15. doi: 10.1053/j.gastro.2021.04.064. |
[16] | Plikus MV, Mayer JA, de la Cruz D, et al. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration[J]. Nature, 2008,451(7176):340⁃344. doi: 10.1038/nature06457. |
[17] | Geyfman M, Plikus MV, Treffeisen E, et al. Resting no more: re⁃defining telogen, the maintenance stage of the hair growth cycle[J]. Biol Rev Camb Philos Soc, 2015,90(4):1179⁃1196. doi: 10. 1111/brv.12151. |
[18] | Wang ZD, Feng Y, Sun L, et al. Anti⁃androgenetic alopecia effect of policosanol from Chinese wax by regulating abnormal hormone levels to suppress premature hair follicle entry into the regression phase[J]. Biomed Pharmacother, 2021,136:111241. doi: 10.1016/j.biopha.2021.111241. |
[19] | Zhang W, Wang N, Zhang T, et al. Roles of melatonin in goat hair follicle stem cell proliferation and pluripotency through regulating the Wnt signaling pathway[J]. Front Cell Dev Biol, 2021,9:686805. doi: 10.3389/fcell.2021.686805. |
[20] | Condorelli AG, El Hachem M, Zambruno G, et al. Notch⁃ing up knowledge on molecular mechanisms of skin fibrosis: focus on the multifaceted Notch signalling pathway[J]. J Biomed Sci, 2021,28(1):36. doi: 10.1186/s12929⁃021⁃00732⁃8. |
[21] | Demehri S, Kopan R. Notch signaling in bulge stem cells is not required for selection of hair follicle fate[J]. Development, 2009,136(6):891⁃896. doi: 10.1242/dev.030700. |
[22] | Hu XM, Li ZX, Zhang DY, et al. A systematic summary of survival and death signalling during the life of hair follicle stem cells[J]. Stem Cell Res Ther, 2021,12(1):453. doi: 10.1186/s13287⁃021⁃02527⁃y. |
[23] | Jaiswal A, Singh R. Homeostases of epidermis and hair follicle, and development of basal cell carcinoma[J]. Biochim Biophys Acta Rev Cancer, 2022,1877(5):188795. doi: 10.1016/j.bbcan. 2022.188795. |
[24] | Morinaga H, Mohri Y, Grachtchouk M, et al. Obesity accelerates hair thinning by stem cell⁃centric converging mechanisms[J]. Nature, 2021,595(7866):266⁃271. doi: 10.1038/s41586⁃021⁃03624⁃x. |
[25] | Suen WJ, Li ST, Yang LT. Hes1 regulates anagen initiation and hair follicle regeneration through modulation of hedgehog signaling[J]. Stem Cells, 2020,38(2):301⁃314. doi: 10.1002/stem.3117. |
[26] | Wang J, Hu K, Cai X, et al. Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis[J]. Acta Pharm Sin B, 2022,12(1):18⁃32. doi: 10.1016/j.apsb.2021.07.023. |
[27] | Zhang X, Zhou D, Ma T, et al. Vascular endothelial growth factor protects CD200⁃rich and CD34⁃positive hair follicle stem cells against androgen⁃induced apoptosis through the phosphoinositide 3⁃kinase/Akt pathway in patients with androgenic alopecia[J]. Dermatol Surg, 2020,46(3):358⁃368. doi: 10.1097/DSS.0000000 000002091. |
[28] | Kim CS, Ding X, Allmeroth K, et al. Glutamine metabolism controls stem cell fate reversibility and long⁃term maintenance in the hair follicle[J]. Cell Metab, 2020,32(4):629⁃642.e8. doi: 10.1016/j.cmet.2020.08.011. |
[29] | Chen Y, Fan Z, Wang X, et al. PI3K/Akt signaling pathway is essential for de novo hair follicle regeneration[J]. Stem Cell Res Ther, 2020,11(1):144. doi: 10.1186/s13287⁃020⁃01650⁃6. |
[30] | Li X. The FGF metabolic axis[J]. Front Med, 2019,13(5):511⁃530. doi: 10.1007/s11684⁃019⁃0711⁃y. |
[31] | Higgins CA, Petukhova L, Harel S, et al. FGF5 is a crucial regulator of hair length in humans[J]. Proc Natl Acad Sci U S A, 2014,111(29):10648⁃10653. doi: 10.1073/pnas.1402862111. |
[32] | Guo K, Wang L, Zhong Y, et al. Cucurbitacin promotes hair growth in mice by inhibiting the expression of fibroblast growth factor 18[J]. Ann Transl Med, 2022,10(20):1104. doi: 10.21037/atm⁃22⁃4423. |
[33] | Nakayama F, Hagiwara A, Kimura M, et al. Evaluation of radiation⁃induced hair follicle apoptosis in mice and the preventive effects of fibroblast growth factor⁃1[J]. Exp Dermatol, 2009,18(10):889⁃892. doi: 10.1111/j.1600⁃0625.2009.00849.x. |
[34] | Kiso M, Hamazaki TS, Itoh M, et al. Synergistic effect of PDGF and FGF2 for cell proliferation and hair inductive activity in murine vibrissal dermal papilla in vitro[J]. J Dermatol Sci, 2015,79(2):110⁃118. doi: 10.1016/j.jdermsci.2015.04.007. |
[35] | Gay D, Kwon O, Zhang Z, et al. FGF9 from dermal γδ T cells induces hair follicle neogenesis after wounding[J]. Nat Med, 2013,19(7):916⁃923. doi: 10.1038/nm.3181. |
[36] | Woo J, Suh W, Sung JH. Hair growth regulation by fibroblast growth factor 12 (FGF12)[J]. Int J Mol Sci, 2022,23(16):9467. doi: 10.3390/ijms23169467. |
[37] | Kawano M, Suzuki S, Suzuki M, et al. Bulge⁃ and basal layer⁃specific expression of fibroblast growth factor⁃13 (FHF⁃2) in mouse skin[J]. J Invest Dermatol, 2004,122(5):1084⁃1090. doi: 10.1111/j.0022⁃202X.2004.22514.x. |
[38] | Xu XG, Gong L, Jiang TL, et al. Stimulation of mouse vibrissal follicle growth by recombinant human fibroblast growth factor 20[J]. Biotechnol Lett, 2018,40(6):1009⁃1014. doi: 10.1007/s10529⁃018⁃2554⁃z. |
[39] | Cai Q, He B, Wang S, et al. Message in a bubble: shuttling small RNAs and proteins between cells and interacting organisms using extracellular vesicles[J]. Annu Rev Plant Biol, 2021,72:497⁃524. doi: 10.1146/annurev⁃arplant⁃081720⁃010616. |
[40] | Yang H, Zhang Y, Du Z, et al. Hair follicle mesenchymal stem cell exosomal lncRNA H19 inhibited NLRP3 pyroptosis to promote diabetic mouse skin wound healing[J]. Aging (Albany NY), 2023,15(3):791⁃809. doi: 10.18632/aging.204513. |
[41] | Hu S, Li Z, Lutz H, et al. Dermal exosomes containing miR⁃218⁃5p promote hair regeneration by regulating β⁃catenin signaling[J]. Sci Adv, 2020,6(30):eaba1685. doi: 10.1126/sciadv.aba1685. |
[42] | Zhao B, Li J, Zhang X, et al. Exosomal miRNA⁃181a⁃5p from the cells of the hair follicle dermal papilla promotes the hair follicle growth and development via the Wnt/β⁃catenin signaling pathway[J]. Int J Biol Macromol, 2022,207:110⁃120. doi: 10.1016/j.ijbiomac.2022.02.177. |
[43] | Liu F, Zhang X, Peng Y, et al. miR⁃24 controls the regenerative competence of hair follicle progenitors by targeting Plk3[J]. Cell Rep, 2021,35(10):109225. doi: 10.1016/j.celrep.2021.109225. |
[44] | Warshauer E, Samuelov L, Sarig O, et al. RBM28, a protein deficient in ANE syndrome, regulates hair follicle growth via miR⁃203 and p63[J]. Exp Dermatol, 2015,24(8):618⁃622. doi: 10.1111/exd.12737. |
[45] | Zhai B, Zhang L, Wang C, et al. Identification of microRNA⁃21 target genes associated with hair follicle development in sheep[J]. PeerJ, 2019,7:e7167. doi: 10.7717/peerj.7167. |
[46] | Du KT, Deng JQ, He XG, et al. MiR⁃214 regulates the human hair follicle stem cell proliferation and differentiation by targeting EZH2 and Wnt/β⁃catenin signaling way in vitro[J]. Tissue Eng Regen Med, 2018,15(3):341⁃350. doi: 10.1007/s13770⁃018⁃0118⁃x. |
[47] | Nojima T, Proudfoot NJ. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics[J]. Nat Rev Mol Cell Biol, 2022,23(6):389⁃406. doi: 10.1038/s41580⁃021⁃00447⁃6. |
[48] | Lin BJ, Zhu JY, Ye J, et al. LncRNA⁃XIST promotes dermal papilla induced hair follicle regeneration by targeting miR⁃424 to activate hedgehog signaling[J]. Cell Signal, 2020,72:109623. doi: 10.1016/j.cellsig.2020.109623. |
[49] | Ahmed MI, Mardaryev AN, Lewis CJ, et al. MicroRNA⁃21 is an important downstream component of BMP signalling in epidermal keratinocytes[J]. J Cell Sci, 2011,124(Pt 20):3399⁃3404. doi: 10.1242/jcs.086710. |
[50] | Wang E, Dai Z, Ferrante AW, et al. A subset of TREM2+ dermal macrophages secretes oncostatin m to maintain hair follicle stem cell quiescence and inhibit hair growth[J]. Cell Stem Cell, 2019,24(4):654⁃669.e6. doi: 10.1016/j.stem.2019.01.011. |
[51] | Castellana D, Paus R, Perez⁃Moreno M. Macrophages contribute to the cyclic activation of adult hair follicle stem cells[J]. PLoS Biol, 2014,12(12):e1002002. doi: 10.1371/journal.pbio.1002002. |
[52] | Maurer M, Fischer E, Handjiski B, et al. Activated skin mast cells are involved in murine hair follicle regression (catagen)[J]. Lab Invest, 1997,77(4):319⁃332. |
[53] | Christoph T, Müller⁃Röver S, Audring H, et al. The human hair follicle immune system: cellular composition and immune privilege[J]. Br J Dermatol, 2000,142(5):862⁃873. doi: 10.1046/j.1365⁃2133.2000.03464.x. |
[54] | Lin X, Zhu L, He J. Morphogenesis, growth cycle and molecular regulation of hair follicles[J]. Front Cell Dev Biol, 2022,10:899095. doi: 10.3389/fcell.2022.899095. |
[1] | 陶秋薇 陈启韬 邵光辉 李煜乾 朱麒麟 朱晶 李中明 杜旭峰. 硬斑病性秃发研究进展[J]. 中华皮肤科杂志, 2025, 58(7): 664-667. |
[2] | 王琴 倪春雅 杨凯 林尽染 吴文育. 口服低剂量米诺地尔在雄激素性秃发治疗中的应用[J]. 中华皮肤科杂志, 2025, 58(7): 657-660. |
[3] | 张莉 宋秀祖. 血管内皮生长因子在雄激素性秃发中的研究进展[J]. 中华皮肤科杂志, 2025, 58(7): 683-685. |
[4] | 邵光辉 李煜乾 陈启韬 朱麒麟 朱晶 李中明 杜旭峰 范卫新. 先天性三角形秃发研究进展[J]. 中华皮肤科杂志, 2025, 58(7): 668-671. |
[5] | 沙雨鸥 魏珂璐 林尽染 刘庆梅 倪春雅 吴文育. 模式性分布的纤维化性秃发研究进展[J]. 中华皮肤科杂志, 2025, 58(7): 660-663. |
[6] | 杨洁 刘莉萍. 单细胞测序在毛发相关研究中的应用[J]. 中华皮肤科杂志, 2025, 58(7): 690-694. |
[7] | 林尽染 梁晓进 刘庆梅 吴文育. 雄激素性秃发与代谢综合征的关联:从发病机制到治疗策略[J]. 中华皮肤科杂志, 2025, 58(7): 591-594. |
[8] | 沈林霞 赵惠涓 林尽染 刘庆梅 任士芳 吴文育. 男性雄激素性秃发患者血清免疫球蛋白GN-糖链特征研究[J]. 中华皮肤科杂志, 2025, 58(7): 595-602. |
[9] | 杨凯 林尽染, 祝飞 冯苏云 李政 张悦 胡瑞铭 程含皛 周圳滔 吴亚桐 杨顶权 张菊芳 吴文育, . 某国产毛囊提取系统提取雄激素性秃发患者毛囊的有效性和安全性:多中心、前瞻性、随机、自身对照临床试验[J]. 中华皮肤科杂志, 2025, 58(7): 603-607. |
[10] | 丁炜蕴 林尽染 刘庆梅 张悦 杨凯 倪春雅 吴文育. 干细胞在头皮衰老中的作用及相关治疗策略[J]. 中华皮肤科杂志, 2025, 58(7): 671-675. |
[11] | 中华医学会皮肤性病学分会毛发学组. 毛发扁平苔藓/前额纤维化性秃发诊疗中国专家共识(2025版)[J]. 中华皮肤科杂志, 2025, 58(7): 583-590. |
[12] | 孙佳怡 宋秀祖. 自噬在毛发生理病理中的研究进展[J]. 中华皮肤科杂志, 2025, 58(7): 679-682. |
[13] | 丁雨欣, 苗宇杰 毛美淇 陈锦阳 林志伟 吕中法. 脐带间充质干细胞衍生的纳米囊泡诱导毛发再生的作用研究[J]. 中华皮肤科杂志, 2025, 58(5): 431-439. |
[14] | 赵蕾 周明 全雪梅 崔艾丽. 骨膜蛋白及其相关信号通路在瘢痕疙瘩中作用的研究进展[J]. 中华皮肤科杂志, 2025, 0(3): 20240063-e20240063. |
[15] | 汪锋 夏汝山. 毛囊黑素干细胞在白发中的研究进展[J]. 中华皮肤科杂志, 2025, 58(2): 182-185. |
|