[1] |
Negri VA, Watt FM. Understanding human epidermal stem cells at single⁃cell resolution[J]. J Invest Dermatol, 2022,142(8):2061⁃2067. doi: 10.1016/j.jid.2022.04.003.
|
[2] |
Belote RL, Le D, Maynard A, et al. Human melanocyte development and melanoma dedifferentiation at single⁃cell resolution[J]. Nat Cell Biol, 2021,23(9):1035⁃1047. doi: 10. 1038/s41556⁃021⁃00740⁃8.
|
[3] |
Vorstandlechner V, Laggner M, Kalinina P, et al. Deciphering the functional heterogeneity of skin fibroblasts using single⁃cell RNA sequencing[J]. FASEB J, 2020,34(3):3677⁃3692. doi: 10.1096/fj.201902001RR.
|
[4] |
Ma F, Plazyo O, Billi AC, et al. Single cell and spatial sequencing define processes by which keratinocytes and fibroblasts amplify inflammatory responses in psoriasis[J]. Nat Commun, 2023,14(1):3455. doi: 10.1038/s41467⁃023⁃39020⁃4.
|
[5] |
He H, Suryawanshi H, Morozov P, et al. Single⁃cell transcriptome analysis of human skin identifies novel fibroblast subpopulation and enrichment of immune subsets in atopic dermatitis[J]. J Allergy Clin Immunol, 2020,145(6):1615⁃1628. doi: 10.1016/j.jaci.2020.01.042.
|
[6] |
Zou Z, Long X, Zhao Q, et al. A single⁃cell transcriptomic atlas of human skin aging[J]. Dev Cell, 2021,56(3):383⁃397.e8. doi: 10.1016/j.devcel.2020.11.002.
|
[7] |
Joost S, Zeisel A, Jacob T, et al. Single⁃cell transcriptomics reveals that differentiation and spatial signatures shape epidermal and hair follicle heterogeneity[J]. Cell Syst, 2016,3(3):221⁃237.e9. doi: 10.1016/j.cels.2016.08.010.
|
[8] |
Joost S, Annusver K, Jacob T, et al. The molecular anatomy of mouse skin during hair growth and rest[J]. Cell Stem Cell, 2020,26(3):441⁃457.e7. doi: 10.1016/j.stem.2020.01.012.
|
[9] |
Chovatiya G, Ghuwalewala S, Walter LD, et al. High⁃resolution single⁃cell transcriptomics reveals heterogeneity of self⁃renewing hair follicle stem cells[J]. Exp Dermatol, 2021,30(4):457⁃471. doi: 10.1111/exd.14262.
|
[10] |
Ge W, Tan SJ, Wang SH, et al. Single⁃cell transcriptome profiling reveals dermal and epithelial cell fate decisions during embryonic hair follicle development[J]. Theranostics, 2020,10(17):7581⁃7598. doi: 10.7150/thno.44306.
|
[11] |
Mok KW, Saxena N, Heitman N, et al. Dermal condensate niche fate specification occurs prior to formation and is placode progenitor dependent[J]. Dev Cell, 2019,48(1):32⁃48.e5. doi: 10.1016/j.devcel.2018.11.034.
|
[12] |
Gupta K, Levinsohn J, Linderman G, et al. Single⁃cell analysis reveals a hair follicle dermal niche molecular differentiation trajectory that begins prior to morphogenesis[J]. Dev Cell, 2019,48(1):17⁃31.e6. doi: 10.1016/j.devcel.2018.11.032.
|
[13] |
Sulic AM, Das Roy R, Papagno V, et al. Transcriptomic landscape of early hair follicle and epidermal development[J]. Cell Rep, 2023,42(6):112643. doi: 10.1016/j.celrep.2023.112643.
|
[14] |
Liu Y, Guerrero⁃Juarez CF, Xiao F, et al. Hedgehog signaling reprograms hair follicle niche fibroblasts to a hyper⁃activated state[J]. Dev Cell, 2022,57(14):1758⁃1775.e7. doi: 10.1016/j.devcel.2022.06.005.
|
[15] |
Lin Z, Jin S, Chen J, et al. Murine interfollicular epidermal differentiation is gradualistic with GRHL3 controlling progression from stem to transition cell states[J]. Nat Commun, 2020,11(1):5434. doi: 10.1038/s41467⁃020⁃19234⁃6.
|
[16] |
Zhang C, Wang D, Dowell R, et al. Single cell analysis of transcriptome and open chromatin reveals the dynamics of hair follicle stem cell aging[J]. Front Aging, 2023,4:1192149. doi: 10.3389/fragi.2023.1192149.
|
[17] |
Phan QM, Fine GM, Salz L, et al. Lef1 expression in fibroblasts maintains developmental potential in adult skin to regenerate wounds[J]. Elife, 2020,9:e60066. doi: 10.7554/eLife.60066.
|
[18] |
Thompson SM, Phan QM, Winuthayanon S, et al. Parallel single⁃cell multiomics analysis of neonatal skin reveals the transitional fibroblast states that restrict differentiation into distinct fates[J]. J Invest Dermatol, 2022,142(7):1812⁃1823.e3. doi: 10.1016/j.jid.2021.11.032.
|
[19] |
Phan QM, Sinha S, Biernaskie J, et al. Single⁃cell transcriptomic analysis of small and large wounds reveals the distinct spatial organization of regenerative fibroblasts[J]. Exp Dermatol, 2021,30(1):92⁃101. doi: 10.1111/exd.14244.
|
[20] |
Lim CH, Sun Q, Ratti K, et al. Hedgehog stimulates hair follicle neogenesis by creating inductive dermis during murine skin wound healing[J]. Nat Commun, 2018,9(1):4903. doi: 10.1038/s41467⁃018⁃07142⁃9.
|
[21] |
Gay D, Ghinatti G, Guerrero⁃Juarez CF, et al. Phagocytosis of Wnt inhibitor SFRP4 by late wound macrophages drives chronic Wnt activity for fibrotic skin healing[J]. Sci Adv, 2020,6(12):eaay3704. doi: 10.1126/sciadv.aay3704.
|
[22] |
Sakamoto K, Jin SP, Goel S, et al. Disruption of the endopeptidase ADAM10⁃Notch signaling axis leads to skin dysbiosis and innate lymphoid cell⁃mediated hair follicle destruction[J]. Immunity, 2021,54(10):2321⁃2337.e10. doi: 10.1016/j.immuni.2021.09.001.
|
[23] |
Cheng JB, Sedgewick AJ, Finnegan AI, et al. Transcriptional programming of normal and inflamed human epidermis at single⁃cell resolution[J]. Cell Rep, 2018,25(4):871⁃883. doi: 10.1016/j.celrep.2018.09.006.
|
[24] |
Takahashi R, Grzenda A, Allison TF, et al. Defining transcriptional signatures of human hair follicle cell states[J]. J Invest Dermatol, 2020,140(4):764⁃773.e4. doi: 10.1016/j.jid.2019.07.726.
|
[25] |
Wu S, Yu Y, Liu C, et al. Single⁃cell transcriptomics reveals lineage trajectory of human scalp hair follicle and informs mechanisms of hair graying[J]. Cell Discov, 2022,8(1):49. doi: 10.1038/s41421⁃022⁃00394⁃2.
|
[26] |
Shim J, Park J, Abudureyimu G, et al. Comparative spatial transcriptomic and single⁃cell analyses of human nail units and hair follicles show transcriptional similarities between the onychodermis and follicular dermal papilla[J]. J Invest Dermatol, 2022,142(12):3146⁃3157.e12. doi: 10.1016/j.jid.2022. 06.022.
|
[27] |
Janson DG, Saintigny G, van Adrichem A, et al. Different gene expression patterns in human papillary and reticular fibroblasts[J]. J Invest Dermatol, 2012,132(11):2565⁃2572. doi: 10.1038/jid.2012.192.
|
[28] |
Solé⁃Boldo L, Raddatz G, Schütz S, et al. Single⁃cell transcriptomes of the human skin reveal age⁃related loss of fibroblast priming[J]. Commun Biol, 2020,3(1):188. doi: 10. 1038/s42003⁃020⁃0922⁃4.
|
[29] |
Hughes TK, Wadsworth MH 2nd, Gierahn TM, et al. Second⁃strand synthesis⁃based massively parallel scRNA⁃Seq reveals cellular states and molecular features of human inflammatory skin pathologies[J]. Immunity, 2020,53(4):878⁃894.e7. doi: 10.1016/j.immuni.2020.09.015.
|
[30] |
Lee EY, Dai Z, Jaiswal A, et al. Functional interrogation of lymphocyte subsets in alopecia areata using single⁃cell RNA sequencing[J]. Proc Natl Acad Sci U S A, 2023,120(29):e2305764120. doi: 10.1073/pnas.2305764120.
|
[31] |
Ober⁃Reynolds B, Wang C, Ko JM, et al. Integrated single⁃cell chromatin and transcriptomic analyses of human scalp identify gene⁃regulatory programs and critical cell types for hair and skin diseases[J]. Nat Genet, 2023,55(8):1288⁃1300. doi: 10.1038/s41588⁃023⁃01445⁃4.
|
[32] |
Lu Z, Xie Y, Huang H, et al. Hair follicle stem cells regulate retinoid metabolism to maintain the self⁃renewal niche for melanocyte stem cells[J]. Elife, 2020,9:e52712. doi: 10.7554/eLife.52712.
|
[33] |
Zhang B, Ma S, Rachmin I, et al. Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells[J]. Nature, 2020,577(7792):676⁃681. doi: 10.1038/s41586⁃020⁃1935⁃3.
|
[34] |
Nicu C, O'Sullivan J, Ramos R, et al. Dermal adipose tissue secretes hgf to promote human hair growth and pigmentation[J]. J Invest Dermatol, 2021,141(7):1633⁃1645.e13. doi: 10. 1016/j.jid.2020.12.019.
|
[35] |
Wang E, Higgins CA. Immune cell regulation of the hair cycle[J]. Exp Dermatol, 2020,29(3):322⁃333. doi: 10.1111/exd.14070.
|
[36] |
Lee J, Rabbani CC, Gao H, et al. Hair⁃bearing human skin generated entirely from pluripotent stem cells[J]. Nature, 2020,582(7812):399⁃404. doi: 10.1038/s41586⁃020⁃2352⁃3.
|
[37] |
Ma J, Liu J, Gao D, et al. Establishment of human pluripotent stem cell⁃derived skin organoids enabled pathophysiological model of SARS⁃CoV⁃2 infection[J]. Adv Sci (Weinh), 2022,9(7):e2104192. doi: 10.1002/advs.202104192.
|