中华皮肤科杂志 ›› 2023, e20230083.doi: 10.35541/cjd.20230083
王琪 坚哲
收稿日期:
2023-02-17
修回日期:
2023-04-06
发布日期:
2023-07-21
通讯作者:
坚哲
E-mail:xjzhejian@fmmu.edu.cn
基金资助:
Wang Qi, Jian Zhe
Received:
2023-02-17
Revised:
2023-04-06
Published:
2023-07-21
Contact:
Jian Zhe
E-mail:xjzhejian@fmmu.edu.cn
Supported by:
摘要: 【摘要】 间充质干细胞(MSC)具有再生修复和免疫调节功能。三维培养MSC提供了更符合人体的细胞生存环境,有效促进细胞增殖、分化和旁分泌能力,提高了细胞的各种生物学特性。本文综述MSC相关的三维培养技术及其在皮肤病中的应用进展,为MSC三维培养方法的选择及其在皮肤疾病中的临床应用提供借鉴。
王琪 坚哲. 间充质干细胞三维培养技术及其在皮肤病治疗中的应用进展[J]. 中华皮肤科杂志, 2023,e20230083. doi:10.35541/cjd.20230083
Wang Qi, Jian Zhe. Three-dimensional culture techniques of mesenchymal stem cells and their application in the treatment of skin diseases[J]. Chinese Journal of Dermatology,2023,e20230083. doi:10.35541/cjd.20230083
[1] | Dörnen J, Dittmar T. The role of MSCs and cell fusion in tissue regeneration[J]. Int J Mol Sci, 2021,22(20):10980. doi: 10. 3390/ijms222010980. |
[2] | Shen Z, Huang W, Liu J, et al. Effects of mesenchymal stem cell⁃derived exosomes on autoimmune diseases[J]. Front Immunol, 2021,12:749192. doi: 10.3389/fimmu.2021.749192. |
[3] | Lee BC, Kang I, Yu KR. Therapeutic features and updated clinical trials of mesenchymal stem cell (MSC)⁃derived exosomes[J]. J Clin Med, 2021,10(4)doi: 10.3390/jcm10040711. |
[4] | Huang X, Huang Z, Gao W, et al. Current advances in 3D dynamic cell culture systems[J]. Gels, 2022,8(12):829. doi: 10.3390/gels8120829. |
[5] | Farhat J, Pandey I, AlWahsh M. Transcending toward advanced 3D⁃cell culture modalities: a review about an emerging paradigm in translational oncology[J]. Cells, 2021,10(7):1657. doi: 10. 3390/cells10071657. |
[6] | Jauković A, Abadjieva D, Trivanović D, et al. Specificity of 3D MSC spheroids microenvironment: impact on msc behavior and properties[J]. Stem Cell Rev Rep, 2020,16(5):853⁃875. doi: 10.1007/s12015⁃020⁃10006⁃9. |
[7] | Bagheri⁃Hosseinabadi Z, Seyedi F, Mollaei HR, et al. Combi⁃nation of 5⁃azaytidine and hanging drop culture convert fat cell into cardiac cell[J]. Biotechnol Appl Biochem, 2021,68(1):92⁃101. doi: 10.1002/bab.1897. |
[8] | Velasco V, Shariati SA, Esfandyarpour R. Microtechnology⁃based methods for organoid models[J]. Microsyst Nanoeng, 2020,6:76. doi: 10.1038/s41378⁃020⁃00185⁃3. |
[9] | Mehta G, Hsiao AY, Ingram M, et al. Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy[J]. J Control Release, 2012,164(2):192⁃204. doi: 10.1016/j.jconrel.2012.04.045. |
[10] | Gionet⁃Gonzales MA, Leach JK. Engineering principles for guiding spheroid function in the regeneration of bone, cartilage, and skin[J]. Biomed Mater, 2018,13(3):034109. doi: 10.1088/1748⁃605X/aab0b3. |
[11] | Costa EC, de Melo⁃Diogo D, Moreira AF, et al. Spheroids formation on non⁃adhesive surfaces by liquid overlay technique: considerations and practical approaches[J]. Biotechnol J, 2018,13(1):1700417. doi: 10.1002/biot.201700417. |
[12] | Pettinato G, Wen X, Zhang N. Formation of well⁃defined embryoid bodies from dissociated human induced pluripotent stem cells using microfabricated cell⁃repellent microwell arrays[J]. Sci Rep, 2014,4:7402. doi: 10.1038/srep07402. |
[13] | Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance[J]. J Cell Sci, 2010,123(Pt 24):4195⁃4200. doi: 10.1242/jcs.023820. |
[14] | Xing H, Lee H, Luo L, et al. Extracellular matrix⁃derived biomaterials in engineering cell function[J]. Biotechnol Adv, 2020,42:107421. doi: 10.1016/j.biotechadv.2019.107421. |
[15] | Habanjar O, Diab⁃Assaf M, Caldefie⁃Chezet F, et al. 3D cell culture systems: tumor application, advantages, and disadvan⁃tages[J]. Int J Mol Sci, 2021,22(22):12200. doi: 10.3390/ijms222212200. |
[16] | Shen H, Cai S, Wu C, et al. Recent advances in three⁃dimensional multicellular spheroid culture and future development[J]. Micromachines (Basel), 2021,12(1):96. doi: 10.3390/mi12010096. |
[17] | Caliari SR, Burdick JA. A practical guide to hydrogels for cell culture[J]. Nat Methods, 2016,13(5):405⁃414. doi: 10.1038/nmeth.3839. |
[18] | Orive G, Santos E, Pedraz JL, et al. Application of cell encapsulation for controlled delivery of biological therapeutics[J]. Adv Drug Deliv Rev, 2014,67⁃68:3⁃14. doi: 10.1016/j.addr.2013.07.009. |
[19] | Hu X, Xia Z, Cai K. Recent advances in 3D hydrogel culture systems for mesenchymal stem cell⁃based therapy and cell behavior regulation[J]. J Mater Chem B, 2022,10(10):1486⁃1507. doi: 10.1039/d1tb02537f. |
[20] | Milovac D, Gallego Ferrer G, Ivankovic M, et al. PCL⁃coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity[J]. Mater Sci Eng C Mater Biol Appl, 2014,34:437⁃445. doi: 10.1016/j.msec.2013.09.036. |
[21] | Li P, Fu L, Liao Z, et al. Chitosan hydrogel/3D⁃printed poly(ε⁃caprolactone) hybrid scaffold containing synovial mesenchymal stem cells for cartilage regeneration based on tetrahedral framework nucleic acid recruitment[J]. Biomaterials, 2021,278:121131. doi: 10.1016/j.biomaterials.2021.121131. |
[22] | Mai Z, Liu Q, Bian Y, et al. PCL/Collagen/UA composite biomedical dressing with ordered microfiberous structure fabricated by a 3D near⁃field electrospinning process[J]. Polymers (Basel), 2022,15(1):223. doi: 10.3390/polym15010223. |
[23] | Vonbrunn E, Mueller M, Pichlsberger M, et al. Electrospun PCL/PLA scaffolds are more suitable carriers of placental mesenchymal stromal cells than collagen/elastin scaffolds and prevent wound contraction in a mouse model of wound healing[J]. Front Bioeng Biotechnol, 2020,8:604123. doi: 10.3389/fbioe.2020.604123. |
[24] | Liu D, Chen S, Win Naing M. A review of manufacturing capabilities of cell spheroid generation technologies and future development[J]. Biotechnol Bioeng, 2021,118(2):542⁃554. doi: 10.1002/bit.27620. |
[25] | Alblawi A, Ranjani AS, Yasmin H, et al. Scaffold⁃free: a developing technique in field of tissue engineering[J]. Comput Methods Programs Biomed, 2020,185:105148. doi: 10.1016/j.cmpb.2019.105148. |
[26] | Quashie D Jr, Benhal P, Chen Z, et al. Magnetic bio⁃hybrid micro actuators[J]. Nanoscale, 2022,14(12):4364⁃4379. doi: 10.1039/d2nr00152g. |
[27] | Fang Z, Lyu J, Li J, et al. Application of bioreactor technology for cell culture⁃based viral vaccine production: present status and future prospects[J]. Front Bioeng Biotechnol, 2022,10:921755. doi: 10.3389/fbioe.2022.921755. |
[28] | Katt ME, Placone AL, Wong AD, et al. In vitro tumor models: advantages, disadvantages, variables, and selecting the right platform[J]. Front Bioeng Biotechnol, 2016,4:12. doi: 10.3389/fbioe.2016.00012. |
[29] | Wei W, Dai H. Articular cartilage and osteochondral tissue engineering techniques: Recent advances and challenges[J]. Bioact Mater, 2021,6(12):4830⁃4855. doi: 10.1016/j.bioactmat.2021.05.011. |
[30] | Li F, Truong VX, Thissen H, et al. Microfluidic encapsulation of human mesenchymal stem cells for articular cartilage tissue regeneration[J]. ACS Appl Mater Interfaces, 2017,9(10):8589⁃8601. doi: 10.1021/acsami.7b00728. |
[31] | Polidoro MA, Ferrari E, Marzorati S, et al. Experimental liver models: from cell culture techniques to microfluidic organs⁃on⁃chip[J]. Liver Int, 2021,41(8):1744⁃1761. doi: 10.1111/liv. 14942. |
[32] | Jo H, Brito S, Kwak BM, et al. Applications of mesenchymal stem cells in skin regeneration and rejuvenation[J]. Int J Mol Sci, 2021,22(5):2410. doi: 10.3390/ijms22052410. |
[33] | Li B, Luan S, Chen J, et al. The MSC⁃derived exosomal lncRNA H19 promotes wound healing in diabetic foot ulcers by upregulating PTEN via microRNA⁃152⁃3p[J]. Mol Ther Nucleic Acids, 2020,19:814⁃826. doi: 10.1016/j.omtn.2019.11.034. |
[34] | Guillamat⁃Prats R. The role of MSC in wound healing, scarring and regeneration[J]. Cells, 2021,10(7):1729. doi: 10.3390/cells10071729. |
[35] | Kouroupis D, Correa D. Increased mesenchymal stem cell functionalization in three⁃dimensional manufacturing settings for enhanced therapeutic applications[J]. Front Bioeng Biotechnol, 2021,9:621748. doi: 10.3389/fbioe.2021.621748. |
[36] | Yang J, Chen Z, Pan D, et al. Umbilical cord⁃derived mesenchymal stem cell⁃derived exosomes combined pluronic F127 hydrogel promote chronic diabetic wound healing and complete skin regeneration[J]. Int J Nanomedicine, 2020,15:5911⁃5926. doi: 10.2147/IJN.S249129. |
[37] | Turner PR, McConnell M, Young SL, et al. 3D living dressing improves healing and modulates immune response in a thermal injury model[J]. Tissue Eng Part C Methods, 2022,28(8):431⁃439. doi: 10.1089/ten.TEC.2022.0088. |
[38] | Kim MH, Wu WH, Choi JH, et al. Conditioned medium from the three⁃dimensional culture of human umbilical cord perivascular cells accelerate the migration and proliferation of human keratinocyte and fibroblast[J]. J Biomater Sci Polym Ed, 2018,29(7⁃9):1066⁃1080. doi: 10.1080/09205063.2017.1340045. |
[39] | Li L, Ngo H, Hwang E, et al. Conditioned medium from human adipose⁃derived mesenchymal stem cell culture prevents UVB⁃induced skin aging in human keratinocytes and dermal fibroblasts[J]. Int J Mol Sci, 2019,21(1):49. doi: 10.3390/ijms 21010049. |
[40] | Deng M, Yu TZ, Li D, et al. Human umbilical cord mesenchymal stem cell⁃derived and dermal fibroblast⁃derived extracellular vesicles protect dermal fibroblasts from ultraviolet radiation⁃induced photoaging in vitro[J]. Photochem Photobiol Sci, 2020,19(3):406⁃414. doi: 10.1039/c9pp00421a. |
[41] | Hu S, Li Z, Cores J, et al. Needle⁃free injection of exosomes derived from human dermal fibroblast spheroids ameliorates skin photoaging[J]. ACS Nano, 2019,13(10):11273⁃11282. doi: 10.1021/acsnano.9b04384. |
[42] | Li A, Guo F, Pan Q, et al. Mesenchymal stem cell therapy: hope for patients with systemic lupus erythematosus[J]. Front Immunol, 2021,12:728190. doi: 10.3389/fimmu.2021.728190. |
[43] | Yang C, Sun J, Tian Y, et al. Immunomodulatory effect of MSCs and MSCs⁃derived extracellular vesicles in systemic lupus erythematosus[J]. Front Immunol, 2021,12:714832. doi: 10. 3389/fimmu.2021.714832. |
[44] | Zhu L, Lin X, Zhi L, et al. Mesenchymal stem cells promote human melanocytes proliferation and resistance to apoptosis through PTEN pathway in vitiligo[J]. Stem Cell Res Ther, 2020,11(1):26. doi: 10.1186/s13287⁃019⁃1543⁃z. |
[1] | 王瑞霞 曲岩磊 艾文锦 闫琳 曲才杰 史同新. 非大疱性嗜中性红斑狼疮1例[J]. 中华皮肤科杂志, 2024, 57(9): 832-834. |
[2] | 林子沅 庞天怡 武静文 靳慧. 多环芳烃在炎症性皮肤病发生发展中的作用研究进展[J]. 中华皮肤科杂志, 2024, 57(8): 765-769. |
[3] | 罗帅寒天 龙海 陆前进, . 2023年系统性红斑狼疮研究新进展[J]. 中华皮肤科杂志, 2024, 57(5): 468-471. |
[4] | 徐经纬 陈爽 郭克磊 韩立 卞华. 微小RNA调控系统性硬皮病纤维化相关信号通路的研究进展[J]. 中华皮肤科杂志, 2024, 0(3): 20230730-e20230730. |
[5] | 陈星宇 姚煦. 中性粒细胞在炎症性皮肤病中的研究进展[J]. 中华皮肤科杂志, 2024, 0(3): 20220865-e20220865. |
[6] | 谢欣然 张璐 杜丹 李晓雪 李焰梅 蒋献. 特应性皮炎共病的研究进展[J]. 中华皮肤科杂志, 2024, 0(3): 20230099-e0230099. |
[7] | 刘绿野 张峻岭. 铁死亡在常见皮肤病中的研究进展[J]. 中华皮肤科杂志, 2024, 0(3): 20220783-e20220783. |
[8] | 郭蕾 曹春艳 方晓雅 冯素英. 自身免疫性大疱病患者创面感染多重耐药菌现况及危险因素分析[J]. 中华皮肤科杂志, 2024, 57(2): 155-160. |
[9] | 荆可 王媛 李锁 冯素英. 表现为环状红斑水疱的自身免疫性表皮下水疱病25例回顾性分析[J]. 中华皮肤科杂志, 2023, 56(9): 832-838. |
[10] | 罗帅寒天 龙海 陆前进. 2022年系统性红斑狼疮研究新进展[J]. 中华皮肤科杂志, 2023, 56(3): 266-269. |
[11] | 胡颖 焦晴晴. 记忆性T细胞在慢性自身免疫性皮肤病中的研究进展[J]. 中华皮肤科杂志, 2023, 0(2): 20230193-e20230193. |
[12] | 蒋佳怡 王大光. 系统性疾病致甲改变机制研究进展[J]. 中华皮肤科杂志, 2023, 0(2): 20220078-e20220078. |
[13] | 李华平 高爱莉 梁碧华 邓蕙妍 陈教全 邹荟 林天一 张三泉 朱慧兰. 二甲双胍激活单磷酸腺苷活化蛋白激酶/核转录因子E2相关因子2信号通路抑制长波紫外线诱导的HaCaT细胞光老化[J]. 中华皮肤科杂志, 2023, 56(12): 1123-1130. |
[14] | 朱鑫宇 潘晓媛 杨海晶 王飞 董正邦. 自身免疫性水疱病患者新型冠状病毒感染临床特征[J]. 中华皮肤科杂志, 2023, 56(11): 1023-1027. |
[15] | 万立 陈金波 姜倩 陈红英 胡彬 陈柳青. 反射式共聚焦显微镜在界面皮炎中的应用研究进展[J]. 中华皮肤科杂志, 2023, 56(10): 982-985. |
|