[1] |
de Jong E, Lammerts M, Genders RE, et al. Update of advanced cutaneous squamous cell carcinoma[J]. J Eur Acad Dermatol Venereol, 2022,36(Suppl 1):6⁃10. doi: 10.1111/jdv. 17728.
|
[2] |
Genders RE, Weijns ME, Dekkers OM, et al. Metastasis of cutaneous squamous cell carcinoma in organ transplant recipients and the immunocompetent population: is there a difference? A systematic review and meta⁃analysis[J]. J Eur Acad Dermatol Venereol, 2019,33(5):828⁃841. doi: 10.1111/jdv.15396.
|
[3] |
Guba M, Graeb C, Jauch KW, et al. Pro⁃ and anti⁃cancer effects of immunosuppressive agents used in organ transplantation[J]. Transplantation, 2004,77(12):1777⁃1782. doi: 10.1097/01.tp. 0000120181.89206.54.
|
[4] |
Brougham ND, Tan ST. The incidence and risk factors of metastasis for cutaneous squamous cell carcinoma⁃⁃implications on the T⁃classification system[J]. J Surg Oncol, 2014,110(7):876⁃882. doi: 10.1002/jso.23731.
|
[5] |
Sunkara RR, Sarate RM, Setia P, et al. SFRP1 in skin tumor initiation and cancer stem cell regulation with potential implications in epithelial cancers[J]. Stem Cell Reports, 2020,14(2):271⁃284. doi: 10.1016/j.stemcr.2019.12.006.
|
[6] |
Parsons MJ, Tammela T, Dow LE. WNT as a driver and dependency in cancer[J]. Cancer Discov, 2021,11(10):2413⁃2429. doi: 10.1158/2159⁃8290.CD⁃21⁃0190.
|
[7] |
Zimmerli D, Cecconi V, Valenta T, et al. WNT ligands control initiation and progression of human papillomavirus⁃driven squamous cell carcinoma[J]. Oncogene, 2018,37(27):3753⁃3762. doi: 10.1038/s41388⁃018⁃0244⁃x.
|
[8] |
Dayal J, Mason SM, Salas⁃Alanis JC, et al. Heterogeneous addiction to transforming growth factor⁃beta signalling in recessive dystrophic epidermolysis bullosa⁃associated cutaneous squamous cell carcinoma[J]. Br J Dermatol, 2021,184(4):697⁃708. doi: 10.1111/bjd.19421.
|
[9] |
Li L, Li F, Xia Y, et al. UVB induces cutaneous squamous cell carcinoma progression by de novo ID4 methylation via methylation regulating enzymes[J]. EBioMedicine, 2020,57:102835. doi: 10. 1016/j.ebiom.2020.102835.
|
[10] |
Ke Y, Wang XJ. TGFβ signaling in photoaging and UV⁃induced skin cancer[J]. J Invest Dermatol, 2021,141(4S):1104⁃1110. doi: 10.1016/j.jid.2020.11.007.
|
[11] |
Zhang J, Jiang H, Xu D, et al. DNA⁃PKcs mediates an epithelial⁃mesenchymal transition process promoting cutaneous squamous cell carcinoma invasion and metastasis by targeting the TGF⁃β1/Smad signaling pathway[J]. Onco Targets Ther, 2019,12:9395⁃9405. doi: 10.2147/OTT.S205017.
|
[12] |
Wang H, Li H, Yan Q, et al. Serum matrix metalloproteinase⁃13 as a diagnostic biomarker for cutaneous squamous cell carcinoma[J]. BMC Cancer, 2021,21(1):816. doi: 10.1186/s12885⁃021⁃08566⁃1.
|
[13] |
Taniguchi S, Elhance A, Van Duzer A, et al. Tumor⁃initiating cells establish an IL⁃33⁃TGF⁃β niche signaling loop to promote cancer progression[J]. Science, 2020,369(6501):eaay1813 [pii]. doi: 10.1126/science.aay1813.
|
[14] |
Peng D, Fu M, Wang M, et al. Targeting TGF⁃β signal transduction for fibrosis and cancer therapy[J]. Mol Cancer, 2022,21(1):104. doi: 10.1186/s12943⁃022⁃01569⁃x.
|
[15] |
Mercurio L, Albanesi C, Madonna S. Recent updates on the involvement of PI3K/AKT/mTOR molecular cascade in the pathogenesis of hyperproliferative skin disorders[J]. Front Med (Lausanne), 2021,8:665647. doi: 10.3389/fmed.2021.665647.
|
[16] |
Hafner C, Landthaler M, Vogt T. Activation of the PI3K/AKT signalling pathway in non⁃melanoma skin cancer is not mediated by oncogenic PIK3CA and AKT1 hotspot mutations[J]. Exp Dermatol, 2010,19(8):e222⁃227. doi: 10.1111/j.1600⁃0625. 2009.01056.x.
|
[17] |
Thakur MA, Khandelwal AR, Gu X, et al. Inhibition of fibroblast growth factor receptor attenuates UVB⁃induced skin carcino⁃genesis[J]. J Invest Dermatol, 2022,142(11):2873⁃2884.e7. doi: 10.1016/j.jid.2022.03.036.
|
[18] |
Yu H, Lin L, Zhang Z, et al. Targeting NF⁃κB pathway for the therapy of diseases: mechanism and clinical study[J]. Signal Transduct Target Ther, 2020,5(1):209. doi: 10.1038/s41392⁃020⁃00312⁃6.
|
[19] |
Mirzaei S, Saghari S, Bassiri F, et al. NF⁃κB as a regulator of cancer metastasis and therapy response: a focus on epithelial⁃mesenchymal transition[J]. J Cell Physiol, 2022,237(7):2770⁃2795. doi: 10.1002/jcp.30759.
|
[20] |
Ma X, Wu D, Zhang X, et al. microRNA⁃214 prevents traits of cutaneous squamous cell carcinoma via VEGFA and Bcl⁃2[J]. Technol Cancer Res Treat, 2020,19:15330338 20980098. doi: 10.1177/1533033820980098.
|
[21] |
Neagu M, Constantin C, Cretoiu SM, et al. miRNAs in the diagnosis and prognosis of skin cancer[J]. Front Cell Dev Biol, 2020,8:71. doi: 10.3389/fcell.2020.00071.
|
[22] |
Gong ZH, Zhou F, Shi C, et al. miRNA⁃221 promotes cutaneous squamous cell carcinoma progression by targeting PTEN[J]. Cell Mol Biol Lett, 2019,24:9. doi: 10.1186/s11658⁃018⁃0131⁃z.
|
[23] |
Zhou B, Lin W, Long Y, et al. Notch signaling pathway: architecture, disease, and therapeutics[J]. Signal Transduct Target Ther, 2022,7(1):95. doi: 10.1038/s41392⁃022⁃00934⁃y.
|
[24] |
Di Nardo L, Pellegrini C, Di Stefani A, et al. Molecular genetics of cutaneous squamous cell carcinoma: perspective for treatment strategies[J]. J Eur Acad Dermatol Venereol, 2020,34(5):932⁃941. doi: 10.1111/jdv.16098.
|
[25] |
Bednarski IA, Ciążyńska M, Wódz K, et al. Hippo signaling pathway as a new potential target in non⁃melanoma skin cancers: a narrative review[J]. Life (Basel), 2021,11(7):680. doi: 10. 3390/life11070680.
|