Chinese Journal of Dermatology ›› 2025, Vol. 58 ›› Issue (9): 868-872.doi: 10.35541/cjd.20250078
• Reviews • Previous Articles Next Articles
Jiang Ziqi1, Zhong Judan1, Chen Tingqiao2, Chen Jin1
Received:
2025-02-18
Revised:
2025-08-07
Online:
2025-09-15
Published:
2025-09-01
Contact:
Chen Jin
E-mail:chenjin7791@163.com
Supported by:
Jiang Ziqi, Zhong Judan, Chen Tingqiao, Chen Jin. Pathogenesis and treatment of melasma[J]. Chinese Journal of Dermatology, 2025, 58(9): 868-872.doi:10.35541/cjd.20250078
[1] | Gu D, Pan R, Meng X, et al. What lies behind melasma: a review of the related skin microenvironment[J]. Int J Dermatol, 2025,64(2):256⁃265. doi: 10.1111/ijd.17453. |
[2] | Guida S, Longo C, Ronga R, et al. Melasma and reflectance confocal microscopy: from baseline to treatment monitoring[J]. Int J Dermatol, 2024,63(8):1007⁃1012. doi: 10.1111/ijd.17117. |
[3] | Hafeez F, Mata DA, Lian CG, et al. Prominent transepidermal melanin deposition is a distinguishing histopathological feature of melasma: a clinicopathologic study[J]. Dermatology, 2021,237(1):145⁃147. doi: 10.1159/000504408. |
[4] | Gautam M, Patil S, Nadkarni N, et al. Histopathological comparison of lesional and perilesional skin in melasma: a cross⁃sectional analysis[J]. Indian J Dermatol Venereol Leprol, 2019,85(4):367⁃373. doi: 10.4103/ijdvl.IJDVL_866_17. |
[5] | Chen IL, Wang YJ, Chang CC, et al. Computer⁃aided detection (CADe) system with optical coherent tomography for melanin morphology quantification in melasma patients[J]. Diagnostics (Basel), 2021,11(8)doi: 10.3390/diagnostics11081498. |
[6] | Wang YJ, Chang CC, Wu YH, et al. Adaptability of melanocytes post ultraviolet stimulation in patients with melasma[J]. Lasers Surg Med, 2023,55(7):680⁃689. doi: 10.1002/lsm.23699. |
[7] | Böhm M, Robert C, Malhotra S, et al. An overview of benefits and risks of chronic melanocortin⁃1 receptor activation[J]. J Eur Acad Dermatol Venereol, 2025,39(1):39⁃51. doi: 10.1111/jdv. 20269. |
[8] | Luo L, Zeng H, Hu Y, et al. The amino acid transporter SLC16A10 promotes melanogenesis by facilitating the transportation of phenylalanine[J]. Exp Dermatol, 2024,33(8):e15165. doi: 10.1111/exd.15165. |
[9] | Espósito A, de Souza NP, Miot L, et al. Deficit in autophagy: a possible mechanism involved in melanocyte hyperfunction in melasma[J]. Indian J Dermatol Venereol Leprol, 2021:1⁃3. doi: 10.25259/IJDVL_927_20. |
[10] | Hakozaki T, Wang J, Laughlin T, et al. Role of interleukin⁃6 and endothelin⁃1 receptors in enhanced melanocyte dendricity of facial spots and suppression of their ligands by niacinamide and tranexamic acid[J]. J Eur Acad Dermatol Venereol, 2024,38 Suppl 2:3⁃10. doi: 10.1111/jdv.19719. |
[11] | Bento⁃Lopes L, Cabaço LC, Charneca J, et al. Melanin's journey from melanocytes to keratinocytes: uncovering the molecular mechanisms of melanin transfer and processing[J]. Int J Mol Sci, 2023,24(14). doi: 10.3390/ijms241411289. |
[12] | Guo MS, Wu Q, Dong TT, et al. The UV⁃induced uptake of melanosome by skin keratinocyte is triggered by α7 nicotinic acetylcholine receptor⁃mediated phagocytosis[J]. FEBS J, 2023,290(3):724⁃744. doi: 10.1111/febs.16613. |
[13] | Murase D, Kusaka⁃Kikushima A, Hachiya A, et al. Autophagy declines with premature skin aging resulting in dynamic alterations in skin pigmentation and epidermal differentiation[J]. Int J Mol Sci, 2020,21(16):5708. doi: 10.3390/ijms211 65708. |
[14] | Kim JY, Kim J, Ahn Y, et al. Autophagy induction can regulate skin pigmentation by causing melanosome degradation in keratinocytes and melanocytes[J]. Pigment Cell Melanoma Res, 2020,33(3):403⁃415. doi: 10.1111/pcmr.12838. |
[15] | Lee KW, Ryu KJ, Kim M, et al. RCHY1 and OPTN are required for melanophagy, selective autophagy of melanosomes[J]. Proc Natl Acad Sci U S A, 2024,121(14):e2318039121. doi: 10.1073/pnas.2318039121. |
[16] | da Silva CN, Miot HA, Grassi TF, et al. Expression of endothelin⁃1, endothelin receptor⁃A, and endothelin receptor⁃B in facial melasma compared to adjacent skin[J]. Clin Cosmet Investig Dermatol, 2023,16:2847⁃2853. doi: 10.2147/CCID.S402168. |
[17] | Cui YZ, Xu F, Zhou Y, et al. SPRY1 deficiency in keratinocytes induces follicular melanocyte stem cell migration to the epidermis through p53/stem cell factor/C⁃KIT signaling[J]. J Invest Dermatol, 2024,144(10):2255⁃2266.e4. doi: 10.1016/j.jid.2024.02.018. |
[18] | Shi HX, Zhang RZ, Xiao L, et al. Effects of keratinocyte⁃derived and fibroblast⁃derived exosomes on human epidermal melanocytes[J]. Indian J Dermatol Venereol Leprol, 2022,88(3):322⁃331. doi: 10.25259/IJDVL_1087_19. |
[19] | Fu C, Chen J, Lu J, et al. Roles of inflammation factors in melanogenesis (Review)[J]. Mol Med Rep, 2020,21(3):1421⁃1430. doi: 10.3892/mmr.2020.10950. |
[20] | Kim NH, Lee AY. Oxidative stress induces skin pigmentation in melasma by inhibiting hedgehog signaling[J]. Antioxidants (Basel), 2023,12(11). doi: 10.3390/antiox12111969. |
[21] | Fang J, Ouyang M, Qu Y, et al. Advanced glycation end products promote melanogenesis by activating NLRP3 inflammasome in human dermal fibroblasts[J]. J Invest Dermatol, 2022,142(10):2591⁃2602.e8. doi: 10.1016/j.jid.2022.03.025. |
[22] | Espósito A, Brianezi G, Miot L, et al. Fibroblast morphology, growth rate and gene expression in facial melasma[J]. An Bras Dermatol, 2022,97(5):575⁃582. doi: 10.1016/j.abd.2021.09.012. |
[23] | Kim Y, Kang B, Kim JC, et al. Senescent fibroblast⁃derived GDF15 induces skin pigmentation[J]. J Invest Dermatol, 2020,140(12):2478⁃2486.e4. doi: 10.1016/j.jid.2020.04.016. |
[24] | Kapoor R, Dhatwalia SK, Kumar R, et al. Emerging role of dermal compartment in skin pigmentation: comprehensive review[J]. J Eur Acad Dermatol Venereol, 2020,34(12):2757⁃2765. doi: 10.1111/jdv.16404. |
[25] | Bellei B, Picardo M. Premature cell senescence in human skin: dual face in chronic acquired pigmentary disorders[J]. Ageing Res Rev, 2020,57:100981. doi: 10.1016/j.arr.2019.100981. |
[26] | Wang Z, Chen Y, Pan S, et al. Quantitative classification of melasma with photoacoustic microscopy: a pilot study[J]. J Biomed Opt, 2024,29(Suppl 1):S11504. doi: 10.1117/1.JBO.29.S1.S11504. |
[27] | Pomerantz H, Christman MP, Bloom BS, et al. Dynamic optical coherence tomography of cutaneous blood vessels in melasma and vessel response to oral tranexamic acid[J]. Lasers Surg Med, 2021,53(6):861⁃864. doi: 10.1002/lsm.23345. |
[28] | Hara Y, Shibata T. Characteristics of dermal vascularity in melasma and solar lentigo[J]. Photodermatol Photoimmunol Photomed, 2024,40(2):e12953. doi: 10.1111/phpp.12953. |
[29] | Chang CC, Wang YJ, Huang L, et al. Photoaging features of melasma: an in vivo layered and quantitative analysis using computer⁃aided detection of cellular resolution full⁃field optical coherence tomography[J]. J Eur Acad Dermatol Venereol, 2024,38(10):e870⁃e873. doi: 10.1111/jdv.19971. |
[30] | Phansuk K, Vachiramon V, Jurairattanaporn N, et al. Dermal pathology in melasma: an update review[J]. Clin Cosmet Investig Dermatol, 2022,15:11⁃19. doi: 10.2147/CCID.S343332. |
[31] | Espósito A, Brianezi G, de Souza NP, et al. Exploratory study of epidermis, basement membrane zone, upper dermis alterations and wnt pathway activation in melasma compared to adjacent and retroauricular skin[J]. Ann Dermatol, 2020,32(2):101⁃108. doi: 10.5021/ad.2020.32.2.101. |
[32] | Clayton RW, Langan EA, Ansell DM, et al. Neuroendocrinology and neurobiology of sebaceous glands[J]. Biol Rev Camb Philos Soc, 2020,95(3):592⁃624. doi: 10.1111/brv.12579. |
[33] | Flori E, Mastrofrancesco A, Mosca S, et al. Sebocytes contribute to melasma onset[J]. iScience, 2022,25(3):103871. doi: 10. 1016/j.isci.2022.103871. |
[34] | Liu LX, Liao ZK, Dong BQ, et al. Tranexamic acid ameliorates skin hyperpigmentation by downregulating endothelin⁃1 expression in dermal microvascular endothelial cells[J]. Ann Dermatol, 2024,36(3):151⁃162. doi: 10.5021/ad.23.108. |
[35] | Zhu JW, Ni YJ, Tong XY, et al. Tranexamic acid inhibits angiogenesis and melanogenesis in vitro by targeting VEGF receptors[J]. Int J Med Sci, 2020,17(7):903⁃911. doi: 10.7150/ijms.44188. |
[36] | Konisky H, Balazic E, Jaller JA, et al. Tranexamic acid in melasma: a focused review on drug administration routes[J]. J Cosmet Dermatol, 2023,22(4):1197⁃1206. doi: 10.1111/jocd. 15589. |
[37] | Poostiyan N, Alizadeh M, Shahmoradi Z, et al. Tranexamic acid microinjections versus tranexamic acid mesoneedling in the treatment of facial melasma: a randomized assessor⁃blind split⁃face controlled trial[J]. J Cosmet Dermatol, 2023,22(4):1238⁃1244. doi: 10.1111/jocd.15580. |
[38] | Jia Z, Tian K, Zhong Y, et al. Effectiveness of combination therapy of broadband light and intradermal injection of tranexamic acid in the treatment of chloasma[J]. J Cosmet Dermatol, 2023,22(5):1536⁃1544. doi: 10.1111/jocd.15632. |
[39] | Bertold C, Fontas E, Singh T, et al. Efficacy and safety of a novel triple combination cream compared to Kligman's trio for melasma: a 24⁃week double⁃blind prospective randomized controlled trial[J]. J Eur Acad Dermatol Venereol, 2023,37(12):2601⁃2607. doi: 10.1111/jdv.19455. |
[40] | Vladulescu D, Scurtu LG, Simionescu AA, et al. Platelet⁃rich plasma (PRP) in dermatology: cellular and molecular mechanisms of action[J]. Biomedicines, 2023,12(1):7. doi: 10.3390/biomedicines12010007. |
[41] | Manole CG, Soare C, Ceafalan LC, et al. Platelet⁃rich plasma in dermatology: new insights on the cellular mechanism of skin repair and regeneration[J]. Life (Basel), 2023,14(1). doi: 10.3390/life14010040. |
[42] | Abd Elraouf IG, Obaid ZM, Fouda I. Intradermal injection of tranexamic acid versus platelet⁃rich plasma in the treatment of melasma: a split⁃face comparative study[J]. Arch Dermatol Res, 2023,315(6):1763⁃1770. doi: 10.1007/s00403⁃023⁃02580⁃y. |
[43] | Simin H, Siliang X, Wei C, et al. Efficacy of microneedle as an assisted therapy for melasma: a meta⁃analysis and systematic review of randomized controlled trials[J]. Aesthetic Plast Surg, 2025,49(6):1755⁃1769. doi: 10.1007/s00266⁃024⁃04395⁃2. |
[44] | Hofny ER, Abdel⁃Motaleb AA, Hamed SA, et al. Trichloroacetic acid with microneedling versus trichloroacetic acid alone for treating melasma[J]. Dermatol Surg, 2023,49(1):66⁃71. doi: 10.1097/DSS.0000000000003641. |
[45] | Ramírez⁃Oliveros JF, de Abreu L, Tamler C, et al. Microneedling with drug delivery (hydroquinone 4% serum) as an adjuvant therapy for recalcitrant melasma[J]. Skinmed, 2020,18(1):38⁃40. |
[46] | Bhattacharjee R, Hanumanthu V, Thakur V, et al. A randomized, open⁃label study to compare two different dosing regimens of oral tranexamic acid in treatment of moderate to severe facial melasma[J]. Arch Dermatol Res, 2023,315(6):1831⁃1836. doi: 10.1007/s00403⁃023⁃02549⁃x. |
[47] | Polat Y, Saraç G. Comparison of clinical results of oral tranexamic acid and platelet rich plasma therapies in melasma treatment[J]. Dermatol Ther, 2022,35(7):e15499. doi: 10.1111/dth.15499. |
[48] | Minni K, Poojary S. Efficacy and safety of oral tranexamic acid as an adjuvant in Indian patients with melasma: a prospective, interventional, single⁃centre, triple⁃blind, randomized, placebo⁃control, parallel group study[J]. J Eur Acad Dermatol Venereol, 2020,34(11):2636⁃2644. doi: 10.1111/jdv.16598. |
[49] | Martinez⁃Rico JC, Chavez⁃Alvarez S, Herz⁃Ruelas ME, et al. Oral tranexamic acid with a triple combination cream versus oral tranexamic acid monotherapy in the treatment of severe melasma[J]. J Cosmet Dermatol, 2022,21(8):3451⁃3457. doi: 10.1111/jocd.14942. |
[50] | Dias J, Lima PB, Cassiano DP, et al. Oral ketotifen associated with famotidine for the treatment of facial melasma: a randomized, double⁃blind, placebo⁃controlled trial[J]. J Eur Acad Dermatol Venereol, 2022,36(2):e123⁃e125. doi: 10.1111/jdv.17692. |
[51] | Han R, Sun Y, Su M. Efficacy and safety of low⁃fluence 730⁃nm picosecond laser in the treatment of melasma in Chinese patients[J]. Dermatol Surg, 2025,51(2):166⁃170. doi: 10.1097/DSS. 0000000000004393. |
[52] | Liang S, Shang S, Tan A, et al. Comparative efficacy and safety of the novel picosecond alexandrite laser and the traditional combined Q⁃switched and long⁃pulse Nd: YAG lasers in melasma treatment: a randomized evaluator⁃blinded trial[J]. Lasers Med Sci, 2025,40(1):29. doi: 10.1007/s10103⁃025⁃04286⁃1. |
[53] | Zhou Y, Li Y, Hamblin MR, et al. Comparison of 755⁃nm picosecond alexandrite laser versus 1064⁃nm Q⁃switched Nd:YAG laser for melasma: a randomized, split⁃face controlled, 2⁃year follow⁃up study[J]. Lasers Surg Med, 2024,56(3):263⁃269. doi: 10.1002/lsm.23763. |
[54] | Galache TR, Sena MM, Tassinary J, et al. Photobiomodulation for melasma treatment: Integrative review and state of the art[J]. Photodermatol Photoimmunol Photomed, 2024,40(1):e12935. doi: 10.1111/phpp.12935. |
[55] | Chen L, Xu Z, Jiang M, et al. Light⁃emitting diode 585 nm photomodulation inhibiting melanin synthesis and inducing autophagy in human melanocytes[J]. J Dermatol Sci, 2018,89(1):11⁃18. doi: 10.1016/j.jdermsci.2017.10.001. |
[56] | Jin S, Chen L, Xu Z, et al. 585 nm light⁃emitting diodes inhibit melanogenesis through upregulating H19/miR⁃675 axis in LEDs⁃irradiated keratinocytes by paracrine effect[J]. J Dermatol Sci, 2020,98(2):102⁃108. doi: 10.1016/j.jdermsci.2020.03.002. |
[57] | Dai X, Jin S, Xuan Y, et al. 590 nm LED irradiation improved erythema through inhibiting angiogenesis of human microvascular endothelial cells and ameliorated pigmentation in melasma[J]. Cells, 2022,11(24):3949. doi: 10.3390/cells11243949. |
[58] | Han HJ, Kim JC, Park YJ, et al. Targeting the dermis for melasma maintenance treatment[J]. Sci Rep, 2024,14(1):949. doi: 10.1038/s41598⁃023⁃51133⁃w. |
[59] | Gulfan M, Wanitphakdeedecha R, Wongdama S, et al. Efficacy and safety of using noninsulated microneedle radiofrequency alone versus in combination with polynucleotides for the treatment of melasma: a pilot study[J]. Dermatol Ther (Heidelb), 2022,12(6):1325⁃1336. doi: 10.1007/s13555⁃022⁃00728⁃8. |
[60] | Mokhtari F, Bahrami B, Faghihi G, et al. Fractional erbium:YAG laser (2940 nm) plus topical hydroquinone compared to intradermal tranexamic acid plus topical hydroquinone for the treatment of refractory melasma: a randomized controlled trial[J]. J Dermatolog Treat, 2022,33(5):2475⁃2481. doi: 10.1080/09546634.2021.1968996. |
[1] | Dai Yeqin, Song Xiuzu. Application of hair follicle transplantation and follicular cell suspension transplantation in the treatment of vitiligo [J]. Chinese Journal of Dermatology, 2025, 58(9): 882-885. |
[2] | Zhang Yude, Wang Hongjuan, Kang Xiaojing. Stem cell therapy for vitiligo: advances in basic and clinical research [J]. Chinese Journal of Dermatology, 2025, 58(9): 878-881. |
[3] | Tian Cuicui, Chen Hao. Pathogenesis of cutaneous T-cell lymphoma-related pruritus [J]. Chinese Journal of Dermatology, 2025, 58(9): 890-892. |
[4] | Duan Bolin, Li Qianwen, Le Yue, Geng Mengmeng, Luo Longfei, Lei Tiechi. Rutin inhibits ultraviolet irradiation-induced dermal fibroblast senescence and melanogenesis in mouse ear skin [J]. Chinese Journal of Dermatology, 2025, 58(9): 801-807. |
[5] | Xu Zhongyi, Xing Xiaoxue, Dong Yaqi, Zhang Chengfeng, Xiang Leihong. Retrospective analysis of clinical manifestations and treatment outcomes in 254 patients with melasma in a tertiary grade-A hospital in Shanghai [J]. Chinese Journal of Dermatology, 2025, 58(9): 808-815. |
[6] | He Muyang, Jin Shanglin, Zhang Chengfeng. Roles of sex hormones and underlying mechanisms in the pathogenesis of melasma [J]. Chinese Journal of Dermatology, 2025, 58(9): 863-867. |
[7] | Zhong Jiemin, Li Wei, Zhang Shujuan, Yang Yan, Xue Rujun, Li Xinyi, Ke Yanan, Chen Xiaoyin, Chen Quan. Comparison of the efficacy and safety of nanomicroneedle- versus ultrasound-mediated delivery of tranexamic acid for the treatment of melasma: a randomized controlled study [J]. Chinese Journal of Dermatology, 2025, 58(9): 829-833. |
[8] | Zhang Chengfeng, Jin Shanglin. New insights into the pathogenesis and clinical therapeutic strategies of melasma [J]. Chinese Journal of Dermatology, 2025, 58(9): 797-800. |
[9] | Guliziba·Tuersun, Zhao Yanan, Wang Hongjuan, Kang Xiaojing, Qu Yuanyuan. Efficacy of autologous melanocyte transplantation combined with 308-nm light-emitting diode phototherapy at escalating doses in the treatment of refractory stable vitiligo: a clinical observation [J]. Chinese Journal of Dermatology, 2025, 58(9): 852-856. |
[10] | Zhou Miaoni, Sheng Anqi, Fu Lifang, Jin Rong, Xu Wen, Wei Xiaodong, Xu Ai′e . Efficacy and safety of an antioxidant gel containing tea polyphenols combined with narrow-band ultraviolet B in the treatment of vitiligo: a single-center randomized controlled trial [J]. Chinese Journal of Dermatology, 2025, 58(9): 834-838. |
[11] | Zhan Jinshan, Xuan Xiuyun, Cao Juanmei, Chen Fangqi, Huang Changzheng. Progress in treatment of anti-melanoma differentiation-associated gene 5 antibody-positive dermatomyositis [J]. Chinese Journal of Dermatology, 2025, 58(8): 785-788. |
[12] | Luo Shuaihantian, Long Hai, Lu Qianjin. Research advances in systemic lupus erythematosus in 2024 [J]. Chinese Journal of Dermatology, 2025, 58(8): 777-780. |
[13] | Bai Qi, Zhu Mingfang, Wu Qingting, Ji Xiaotian, Yang Huiyi, Ma Liping, Zhou Jiaxin. Effect of sinomenine on skin lesions in 2,4-dinitrochlorobenzene-induced atopic dermatitis-like mouse models [J]. Chinese Journal of Dermatology, 2025, 58(8): 759-766. |
[14] | Lin Jinran, Leong Hiochon, Liu Qingmei, Wu Wenyu. Androgenetic alopecia and metabolic syndrome: from mechanisms to treatment strategies [J]. Chinese Journal of Dermatology, 2025, 58(7): 591-594. |
[15] | Wang Qin, Lin Jinran, Liu Qingmei, Wu Wenyu, . Oral minoxidil in the treatment of alopecia areata [J]. Chinese Journal of Dermatology, 2025, 58(7): 653-656. |
|