[1] |
Naglik JR, Challacombe SJ, Hube B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis[J]. Microbiol Mol Biol Rev, 2003,67(3):400⁃428, table of contents. doi: 10. 1128/MMBR.67.3.400⁃428.2003.
|
[2] |
Höfs S, Mogavero S, Hube B. Interaction of Candida albicans with host cells: virulence factors, host defense, escape strategies, and the microbiota[J]. J Microbiol, 2016,54(3):149⁃169. doi: 10.1007/s12275⁃016⁃5514⁃0.
|
[3] |
Basso V, d'Enfert C, Znaidi S, et al. From genes to networks: the regulatory circuitry controlling Candida albicans morphogenesis[J]. Curr Top Microbiol Immunol, 2019,422:61⁃99. doi: 10. 1007/82_2018_144.
|
[4] |
Hall RA. Adapting to change: interactions of Candida albicans with its environment[J]. Future Microbiol, 2017,12:931⁃934. doi: 10.2217/fmb⁃2017⁃0130.
|
[5] |
Zeng B, Li J, Wang Y, et al. In vitro and in vivo effects of suloctidil on growth and biofilm formation of the opportunistic fungus Candida albicans[J]. Oncotarget, 2017,8(41):69972⁃69982. doi: 10.18632/oncotarget.19542.
|
[6] |
Koh AY, Köhler JR, Coggshall KT, et al. Mucosal damage and neutropenia are required for Candida albicans dissemination[J/OL]. PLoS Pathog, 2008,4(2):e35. doi: 10.1371/journal.ppat. 0040035.
|
[7] |
Nobile CJ, Johnson AD. Candida albicans biofilms and human disease[J]. Annu Rev Microbiol, 2015,69:71⁃92. doi: 10.1146/annurev⁃micro⁃091014⁃104330.
|
[8] |
Erwig LP, Gow NA. Interactions of fungal pathogens with phagocytes[J]. Nat Rev Microbiol, 2016,14(3):163⁃176. doi: 10.1038/nrmicro.2015.21.
|
[9] |
Westman J, Walpole G, Kasper L, et al. Lysosome fusion maintains phagosome integrity during fungal infection[J]. Cell Host Microbe, 2020,28(6):798⁃812.e6. doi: 10.1016/j.chom. 2020.09.004.
|
[10] |
Cocozza F, Grisard E, Martin⁃Jaular L, et al. SnapShot: extracellular vesicles[J]. Cell, 2020,182(1):262⁃262.e1. doi: 10.1016/j.cell.2020.04.054.
|
[11] |
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020,367(6478):eaau6977. doi: 10.1126/science.aau6977.
|
[12] |
Cheng L, Hill AF. Therapeutically harnessing extracellular vesicles[J]. Nat Rev Drug Discov, 2022,21(5):379⁃399. doi: 10.1038/s41573⁃022⁃00410⁃w.
|
[13] |
Vonk AG, Netea MG, van der Meer JW, et al. Host defence against disseminated Candida albicans infection and implications for antifungal immunotherapy[J]. Expert Opin Biol Ther, 2006,6(9):891⁃903. doi: 10.1517/14712598.6.9.891.
|
[14] |
Schorey JS, Cheng Y, Singh PP, et al. Exosomes and other extracellular vesicles in host⁃pathogen interactions[J]. EMBO Rep, 2015,16(1):24⁃43. doi: 10.15252/embr.201439363.
|
[15] |
Ramage G, Vande Walle K, Wickes BL, et al. Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms[J]. Antimicrob Agents Chemother, 2001,45(9):2475⁃2479. doi: 10.1128/AAC.45.9.2475⁃2479.2001.
|
[16] |
王文芮, 李海燕, 常江. 佛波酯诱导THP⁃1分化为M0型巨噬细胞的条件优化[J]. 生物医学工程学进展, 2020,41(2):74⁃78,97. doi: 10.3969/j.issn.1674⁃1242.2020.02.003.
|
[17] |
Patel GK, Khan MA, Zubair H, et al. Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications[J]. Sci Rep, 2019,9(1):5335. doi: 10.1038/s41598⁃019⁃41800⁃2.
|
[18] |
Mellinghoff SC, Cornely OA, Jung N. Essentials in Candida bloodstream infection[J]. Infection, 2018,46(6):897⁃899. doi: 10.1007/s15010⁃018⁃1218⁃1.
|
[19] |
Tong Y, Tang J. Candida albicans infection and intestinal immunity[J]. Microbiol Res, 2017,198:27⁃35. doi: 10.1016/j.micres.2017.02.002.
|
[20] |
Sobel JD. Vulvovaginal candidosis[J]. Lancet, 2007,369(9577):1961⁃1971. doi: 10.1016/S0140⁃6736(07)60917⁃9.
|
[21] |
Staniszewska M, Bondaryk M, Piłat J, et al. Virulence factors of Candida albicans[J]. Przegl Epidemiol, 2012,66(4):629⁃633.
|
[22] |
Wang Y, Fan S, Xiao D, et al. Novel silyl ether⁃based acid⁃cleavable antibody⁃MMAE conjugates with appropriate stability and efficacy[J]. Cancers (Basel), 2019,11(7):957. doi: 10. 3390/cancers11070957.
|
[23] |
Barile L, Vassalli G. Exosomes: therapy delivery tools and biomarkers of diseases[J]. Pharmacol Ther, 2017,174:63⁃78. doi: 10.1016/j.pharmthera.2017.02.020.
|
[24] |
Villa S, Hamideh M, Weinstock A, et al. Transcriptional control of hyphal morphogenesis in Candida albicans[J]. FEMS Yeast Res, 2020,20(1):foaa005. doi: 10.1093/femsyr/foaa005.
|
[25] |
Hogan DA, Sundstrom P. The Ras/cAMP/PKA signaling pathway and virulence in Candida albicans[J]. Future Microbiol, 2009,4(10):1263⁃1270. doi: 10.2217/fmb.09.106.
|
[26] |
Chen H, Zhou X, Ren B, et al. The regulation of hyphae growth in Candida albicans[J]. Virulence, 2020,11(1):337⁃348. doi: 10.1080/21505594.2020.1748930.
|
[27] |
Sassone⁃Corsi P. The cyclic AMP pathway[J]. Cold Spring Harb Perspect Biol, 2012,4(12):a011148. doi: 10.1101/cshperspect.a011148.
|
[28] |
Chin KV, Yang WL, Ravatn R, et al. Reinventing the wheel of cyclic AMP: novel mechanisms of cAMP signaling[J]. Ann N Y Acad Sci, 2002,968:49⁃64. doi: 10.1111/j.1749⁃6632.2002.tb04326.x.
|
[29] |
Silao F, Ward M, Ryman K, et al. Mitochondrial proline catabolism activates Ras1/cAMP/PKA⁃induced filamentation in Candida albicans[J]. PLoS Genet, 2019,15(2):e1007976. doi: 10.1371/journal.pgen.1007976.
|
[30] |
Inglis DO, Sherlock G. Ras signaling gets fine⁃tuned: regulation of multiple pathogenic traits of Candida albicans[J]. Eukaryot Cell, 2013,12(10):1316⁃1325. doi: 10.1128/EC.00094⁃13.
|