| [1] | Whitesell L, Robbins N, Huang DS, et al. Structural basis for species⁃selective targeting of Hsp90 in a pathogenic fungus[J]. Nat Commun, 2019,10(1):402. doi: 10.1038/s41467⁃018⁃08248⁃w. | 
																													
																							| [2] | Lohse MB, Gulati M, Johnson AD, et al. Development and regulation of single⁃ and multi⁃species Candida albicans biofilms[J]. Nat Rev Microbiol, 2018,16(1):19⁃31. doi: 10.1038/nrmicro. 2017.107. | 
																													
																							| [3] | Frohner IE, Bourgeois C, Yatsyk K, et al. Candida albicans cell surface superoxide dismutases degrade host⁃derived reactive oxygen species to escape innate immune surveillance[J]. Mol Microbiol, 2009,71(1):240⁃252. doi: 10.1111/j.1365⁃2958.2008. 06528.x. | 
																													
																							| [4] | Lee EJ, Pontes MH, Groisman EA. A bacterial virulence protein promotes pathogenicity by inhibiting the bacterium′s own F1Fo ATP synthase[J]. Cell, 2013,154(1):146⁃156. doi: 10.1016/j.cell.2013.06.004. | 
																													
																							| [5] | Li SX, Song YJ, Zhang YS, et al. Mitochondrial complex V α subunit is critical for Candida albicans pathogenicity through modulating multiple virulence properties[J]. Front Microbiol, 2017,8:285. doi: 10.3389/fmicb.2017.00285. | 
																													
																							| [6] | Erwig LP, Gow NA. Interactions of fungal pathogens with phagocytes[J]. Nat Rev Microbiol, 2016,14(3):163⁃176. doi: 10. 1038/nrmicro.2015.21. | 
																													
																							| [7] | Netea MG, Joosten LA, van der Meer JW, et al. Immune defence against Candida fungal infections[J]. Nat Rev Immunol, 2015,15(10):630⁃642. doi: 10.1038/nri3897. | 
																													
																							| [8] | Mayer FL, Wilson D, Jacobsen ID, et al. The novel Candida albicans transporter Dur31 is a multi⁃stage pathogenicity factor[J/OL]. PLoS Pathog, 2012,8(3):e1002592. doi: 10.1371/journal. ppat.1002592. | 
																													
																							| [9] | Koul A, Vranckx L, Dhar N, et al. Delayed bactericidal response of Mycobacterium tuberculosis to bedaquiline involves remodelling of bacterial metabolism[J]. Nat Commun, 2014,5:3369. doi: 10.1038/ncomms4369. | 
																													
																							| [10] | Noble SM, French S, Kohn LA, et al. Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity[J]. Nat Genet, 2010,42(7):590⁃598. doi: 10.1038/ng.605. | 
																													
																							| [11] | Peroumal D, Manohar K, Patel SK, et al. Virulence and pathogenicity of a Candida albicans mutant with reduced filamentation[J]. Cell Microbiol, 2019,21(12):e13103. doi: 10. 1111/cmi.13103. | 
																													
																							| [12] | Tscherner M, Zwolanek F, Jenull S, et al. The Candida albicans histone acetyltransferase Hat1 regulates stress resistance and virulence via distinct chromatin assembly pathways[J/OL]. PLoS Pathog, 2015,11(10):e1005218. doi: 10.1371/journal.ppat. 100 5218. | 
																													
																							| [13] | She X, Zhang L, Chen H, et al. Cell surface changes in the Candida albicans mitochondrial mutant goa1Δ are associated with reduced recognition by innate immune cells[J]. Cell Microbiol, 2013,15(9):1572⁃1584. doi: 10.1111/cmi.12135. | 
																													
																							| [14] | Chauhan N, Latge JP, Calderone R. Signalling and oxidant adaptation in Candida albicans and Aspergillus fumigatus[J]. Nat Rev Microbiol, 2006,4(6):435⁃444. doi: 10.1038/nrmicro1426. | 
																													
																							| [15] | Lopes da Rosa J, Boyartchuk VL, Zhu LJ, et al. Histone acetyltransferase Rtt109 is required for Candida albicans pathogenesis[J]. Proc Natl Acad Sci U S A, 2010,107(4):1594⁃1599. doi: 10.1073/pnas.0912427107. |